

 Page 1

ECOLOPES
ECOlogical building enveLOPES: a game-changing design approach for

regenerative urban ecosystems

H2020-FET-OPEN-2021-2025

Action number 964414

D3.1: Prototype technical requirements report

Dissemination level: Public

Contractual date of delivery: Month 12, 31 March 2022

Actual date of delivery: Month 12, 29 March 2022

Work package: WP3

Task: T3.1, T3.2, T3.3 and T3.4

Type: Report

Approval Status: Final version for submission

Version: v1.0

Number of pages: 52

Filename: D3.1_PrototypeTechnicalRequirementsReport.docx

Abstract: The objective of D3.1 is to report on the current state of the work carried out in work package 3
(WP3) after the first year. Thus, besides a description of the technical requirements for the ECOLOPES
platform, it presents the elaborated frameworks such as the computational framework (Section 3), the
knowledge generation framework (Section 4), and the cloud-based Rhino.Compute framework (Section 5) to
build the first prototype of the computational platform – the ECOLOPES sandbox (Section 6). Additionally, to
contextualise the ECOLOPES computational platform, other cloud-based design platforms for urban analysis
are introduced in Section 2.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may be
made of the information contained therein. The information in this document is provided as is and no guarantee or warranty is given that
the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

 Page 2

Funded by the European Union

HISTORY

Version Date Reason Revised by

v0.1 24.01.2022 ToC Verena Vogler, Ayman Moghnieh, Anne Mimet, Shany
Barath, Tina Selami, Surayyn Selvan, Wolfgang Weisser

v0.2 26.01.2022 First draft Verena Vogler, Ayman Moghnieh, Anne Mimet, Tina
Selami, Surayyn Selvan, Francesca Mosca, Wolfgang
Weisser

v0.3 08.03.2022 Second draft Verena Vogler, Ayman Moghnieh, Anne Mimet, Shany
Barath, Tina Selami, Surayyn Selvan, Francesca Mosca

v0.4 22.03.2022 Third draft Verena Vogler, Ayman Moghnieh, Anne Mimet, Shany
Barath, Tina Selami, Surayyn Selvan, Francesca Mosca,
Luis Fraguada

v1.0 28.03.2022 Final version Verena Vogler, Ayman Moghnieh, Anne Mimet, Shany
Barath, Tina Selami, Surayyn Selvan, Francesca Mosca,
Wolfgang Weisser

AUTHOR LIST

Organisation Name Contact information

McNeel Verena Vogler verena@mcneel.com

TUM Anne Mimet anne.mimet@tum.de

McNeel Ayman Mognieh ayman@mcneel.com

TECHNION Surayyn Selvan surayyn@campus.technion.ac.il

UNIGE Francesca Mosca francesca.mosca@edu.unige.it

TU Wien Tina Selami tina.selami@tuwien.ac.at

TECHNION Shany Barath barathshany@technion.ac.il

TUM Wolfgang Weisser wolfgang.weisser@tum.de

McNeel Luis Fraguada luis@mcneel.com

 D3.1

 Page 3

EXECUTIVE SUMMARY

This report addresses the overall technical requirements associated with the implementation
of the envisioned ECOLOPES platform, which aims to provide innovative support for the
design, valuation, and optimisation of ecological envelopes.

First, the state-of-the-art of computational platforms that address similar or related design
challenges is reviewed by introducing and describing different exemplary platforms, including
the Rhino framework on top of which major parts of the ECOLOPES platform are to be built
and deployed (Section 2).

The report presents the design exercises conducted, primarily in WP3, to design the ECOLOPES
platform and elicit the technical requirements associated with its implementation.

Then, the report discusses the design of the platform’s computational framework (Section 3),
which defines the software components and environments that together implement the
ECOLOPES computational flow, generating, evaluating, and optimising designs. Based on the
design of the computational framework, the technical requirements pertaining to the system
architecture design and deployment are elicited.

Afterwards, the report describes the knowledge framework including the design and
implementation of the MiMo experiment that concentrates on developing and integrating the
ecological models and describing the data management and orchestration associated with
their execution (Section 4). This discerns the specific requirements associated with running
the models en-masse in a manner that generates meaningful design-related knowledge.

Based on these collaborative design exercises and the complementary information collection
activities conducted in WP3, the data specifications related to the platform’s major
components as well as the overall design of the platform’s system architecture are described
and documented (Section 5).

Lastly, Section 6 of the report introduces the 1st prototype of the ECOLOPES computational
platform – the ECOLOPES Sandbox. The section discusses the infrastructure deployed for
supporting the development and integration of the ECOLOPES platform, which was
conceptualised, developed, and deployed to provide an environment for data sharing, and
testing computational programs and algorithms with project-related datasets. Furthermore,
an example demonstrates how the frontend of the computational platform can be
implemented as a Grasshopper plugin.

The report concludes by drawing plans for the next stage of the development and integration
of the ECOLOPES platform.

 D3.1

 Page 4

ABBREVIATIONS AND ACRONYMS

AEC Architecture, engineering and construction industry

AFG Animal functional groups

AI Artificial intelligence

API Application programming interface

AR Augmented reality

CAD Computer-aided design

CFD Computational fluid dynamics

Computational
Workflow

The overall process, implemented in the ECOLOPES platform, and
composed of chained software components that together resolve
ECOLOPES design cases.

DEM Digital elevation model

ECOLOPES Ecological building envelopes

ECOLOPES Platform A set of interoperable tools and software components that together
support the ECOLOPES approach for the design of envelopes.

FG Functional groups

GH Grasshopper, a visual programming interface for Rhino

InFraReD Intelligent framework for resilient design

KB Knowledge base

KPI Key performance indicators

MADM Multi-attribute decision-making

MiMo Mini Model

ML Machine learning

MOO Multi-objective optimisation

.NET The .NET Framework is a software framework developed by
Microsoft that runs primarily on Microsoft Windows.

NURBS Non-uniform rational basis splines

OpenFOAM A free open-source CFD software developed primarily by
OpenCFD Ltd

PFG Plant functional groups

Rhino Rhinoceros, a 3D free-form NURBS modelling software and cross-
platform open developer platform

 D3.1

 Page 5

Sandbox Sandbox is a cloud-based playground for testing software
components in an agile process.

SDK Software development kit

SO Specific objectives in the ECOLOPES project

SQL Structured query language

UI User interface

URL Uniform resource locator

USLE Universal soil loss equation

VR Virtual reality

WP Work package

 D3.1

 Page 6

TABLE OF CONTENTS

Author list 2

Executive summary 3

Abbreviations and acronyms 3

Table of Contents 6

Introduction 9

2. The State-of-the-Art for data-driven urban planning platforms 11

2.1 Flux.Broward.Land – an open urban development platform 11

2.2 Cityplain – a cloud computing tool for urban planning 12

2.3 InFraReD – a cloud computing tool for urban planning 13

2.4 Rhino as an open development platform and Rhino.Compute 15

2.4.1 Rhino as a cross-platform development framework for the ECOLOPES plugin 16

2.4.2 Rhino.Compute and the Rhino.Compute AppServer 16

2.4.3 The Grasshopper Hops component 18

2.4.4 Existing ECOLOPES-relevant Grasshopper plugins for urban design and analysis

 18

2.5 Conclusions 19

3. The computational framework in ECOLOPES 19

3.1 Open and expert databases 22

3.2 Environmental models (WP3–WP7) 23

3.3 The Ecological Model (WP4) 23

3.3 Knowledge Base (KB) 23

3.4 The EIM ontology (WP4) 24

3.5 The design generation and optimisation environment 24

3.5.1 Architectural design components (WP5) 24

3.5.2 Analysis components (WP3–WP7) 25

3.5.3. Simulation and optimisation components (WP6) 25

3.3 Conclusions 26

4. The knowledge generation framework and the MiMo experiment 27

4.1 Goals of the MiMo experiment 27

4.2 General structure of the MiMo experiment 28

4.3 MiMo inputs 29

 D3.1

 Page 7

4.4. MiMo models 31

4.3.1 The soil depth model 32

4.3.2 The connectivity model 33

4.3.3 The solar radiation model 33

4.3.4 Water retention model 34

4.3.5 The local ecological model 34

4.4 The Knowledge base (KB) 34

4.5 Conclusions 35

5. Software development approach for ECOLOPES 35

5.1 Data and process specification for all components 35

5.2 Conclusions 37

6. The ECOLOPES system architecture 37

6.1 The software components 40

6.1.1 The EIM ontology component 40

6.1.2 The ECOLOPES algorithms component 40

6.1.3 The ECOLOPES data warehouse component 40

6.1.4 The ECOLOPES computational simulation environment component 41

6.1.5 The ECOLOPES front-end tools component 41

6.1.6 The ECOLOPES Multi-Species Habitat component 41

6.2 Advantages of the drafted system for the ECOLOPES project 41

6.3 Technical requirements for building the ECOLOPES platform 41

6.4 Conclusions 42

7. The sandbox – a cloud-based platform for ECOLOPES 43

7.1 The sandbox – the 1st prototype of the computational platform 43

7.2.1 Data storage 44

7.2.2 Rhino.Compute server 45

7.2.3 The algorithm production server 46

7.2 Technical details on the sandbox setup 46

7.3 Testing of the sandbox: ECOLOPES plugin for Grasshopper 47

8. Conclusions and recommendations for the next version 48

References 50

Research Paper: 50

Technologies: 50

 D3.1

 Page 8

Software libraries and tools: 51

Appendix 52

 D3.1

 Page 9

1. INTRODUCTION

The ECOLOPES research project envisions a radically new integrated ecosystem approach to
architecture, including the development of a new technology to achieve this vision. The new
technology aims at enabling a design system for ECOLOPES – a new building envelope that
includes the requirements of multi-species inhabitants. Such a holistic approach to species will
allow plants, microbiota, animals, and humans to co-evolve within future cities (D4.1).
However, the main challenge for the development of a joint technology is a common
understanding between the multidisciplinary experts involved, mainly between architecture
and ecology.

This includes the exchange of knowledge concerning methods, workflows, datasets, sub-
techniques, data exchange formats, with the goal to further implement the key aspects of the
ECOLOPES technology:

1. to make ecological knowledge available for architectural design; and
2. to develop a simulation environment that generates architectural design outcomes

that enable synergies and, thus, limit conflicts between the multi-species inhabitants
(Multi-species design optimization within the CAD environment).

The D3.1 report reflects on the complexity of such an undertaking and focuses on the
individual steps towards the ECOLOPES technology. It describes the progress achieved in the
conceptualization, design, and implementation of the ECOLOPES Platform, which will convey
the ECOLOPES approach and associated computational and analytical processes to the
designers and architects targeted as users.

In particular, the report details the high-level technical requirements of the ECOLOPES
Platform, including the workflow that needs to be implemented, data specifications for
different components, system architecture and enabling infrastructure and middleware
components, backend integration, and the functionalities of the envisioned tools.

During the first phase of the project, and in order to design the ECOLOPES system architecture
and define its constituent components, a benchmarking of related digital technologies and
design frameworks was conducted, focusing on cloud-enabled systems and urban design
applications that support functionalities similar to those contemplated in ECOLOPES. A
selection of these applications and technologies is presented in section 2, state-of-the-art of
relevant applications, focusing on selected platforms and technologies that enable a more
analytical, data-driven, and holistic approach to urban design and urban planning,
encapsulating some of the concepts and processes of ECOLOPES.

The overall process implemented and supported by the ECOLOPES Platform is referred to as
the computational workflow, and its design is crucial for defining its architecture. A
consolidated design of the computational workflow was achieved, as a fruit of collaborative
work between all technical partners involved. It encapsulates the overall technical
requirements of the ECOLOPES platform and shows how the different computational
components are connected and how data passes through the system. The current design of
the computational workflow that ought to be supported by the ECOLOPES platform is
presented in section 3.

 D3.1

 Page 10

In order to analyse the technical requirements of the ecological model and to establish the
data management processes associated with the generation of basic knowledge for the
ECOLOPES platform, the MiMo experiment is introduced and discussed in section 4. It
showcases how the different elemental ecological models are integrated into a composite
ecological model, which can be executed to create datasets pertaining to the generation of
knowledge.

Based on the outcomes of the collaborative design exercises conducted to conceptualise and
describe the computational workflow and the MiMo experiment, the preliminary data
specifications that define the input/output format and requirements for all components are
elicited. These specifications are described in section 5, including aspects pertaining to all
major components of the ECOLOPES platform.

The technical requirements from a system architecture standpoint describe the necessary
infrastructure for the ECOLOPES platform and its components, as well as its integration and
deployment models. The technical requirements specify how to support data management,
backend functions, and user processes. This overall system architecture is described in section
6, reflecting on the selected architecture model’s advantages and capabilities.

Based on the conceptual design of the system architecture, a digital infrastructure and a
development and deployment environment has been created and deployed in order to
support the activities related to the functional bottom-up building of the ECOLOPES’ service
architecture, in particular enabling the deployment of advanced computational algorithms for
design generation, analysis, optimisation and evaluation. This architecture is called the
Sandbox, and is a prototypical version of the ECOLOPES platform. It is a cloud-based
environment where agile processes can already be deployed and tested. It uses cloud-based
computing, data storage, and data sharing options with the goal to provide a joint
environment for all collaborators. The ECOLOPES Sandbox is described in section 7.

Concerning the research methods related to the elicitation of these technical designs and
technical requirements, in the first year of the project mainly quantitative strategies (data
specification questionnaires, interdisciplinary workflow discussions) were applied. However,
lately, empirical methods as part of an experimental exploration process have become more
relevant for the development of the first prototype of the ECOLOPES platform. A particular
example is the MiMo experiment, a computational experiment that aims at building up
knowledge about the relationships between architectural and ecological aspects (Section 4).

Our preliminary results are a first version of the computational workflow, data specification
for all computational components, the design of the MiMo experiment and expected
outcome including the definition of obstacles, successful implementation of a cloud-based
infrastructure through the Sandbox, and finally, the definition of the technical requirements
for the ECOLOPES front-end tools.

The knowledge acquired during the conduction of the activities described, and the overall
technical specification and planning drafted, will enable and support the agile integration and
deployment of the first version of the ECOLOPES platform in the coming project period. The
technical foundations achieved so far constitute a clear roadmap for the integration of the
different components developed in the project work packages, and demonstrate the technical
viability of the envisioned ECOLOPES platform.

 D3.1

 Page 11

2. THE STATE-OF-THE-ART FOR DATA-DRIVEN URBAN PLANNING

PLATFORMS

One of the main challenges with respect to the ECOLOPES technology is to combine cross-
disciplinary expert datasets with 3D CAD models, and to enable a user interface to interact
with the system. In urban design research and software development practice, similar
challenges were encountered and addressed.

As the digital transformation of design processes deepened, more data-driven and data-
intensive processes have been incorporated in general practice and consequently in the
supporting software platforms. Advanced enabling technologies (e.g. sensing and
sensorisation, AI-driven data modelling and simulation, machine learning and forecasting,
etc.) that generate and leverage this data require higher computational power and a more
decentralised approach to system architecture. Therefore, computational frameworks and
software for architectural design have been migrating partially or completely to cloud-based
scalable architectures. Urban planning and analysis software solutions are no exception.

In this section, prominent and relevant examples of contemporary cloud-based urban design
platforms are reviewed: Flux.Land – an open urban development platform (Section 2.1);
CITYPLAIN, a cloud computing tool for urban planning (Section 2.2); and InFraReD – a platform
for intelligent and resilient urban design based on Artificial Intelligence (Section 2.3). Finally,
Section 2.4 offers a review of the Rhino.Compute platform with respect to its relevance for
the development of the ECOLOPES design platform. In this context, it introduces another
example of a web-based interface for urban analysis built on top of Rhino.Compute, the KPF
Urban Interface.

2.1 Flux.Broward.Land – an open urban development platform

Flux.Broward.Land, developed by the Urban Risk Lab at Massachusetts Institute of Technology
and the Center for Landscape Research at the University of Toronto, is an interactive, web-
based, geospatial platform designed to increase awareness and bridge the gap between
different stakeholders of urban development. It offers a data-driven, collaborative, web-based
toolkit for urban planning and decision-making across the scales (Seah et al, 2021). The front-
end of Flux.Broward.Land can be accessed through a standard web browser
(Flux.Broward.Land, 2021). Methods for the integration of data visualisation, data analytics,
and data-driven design have been developed for the platform. Furthermore, a sectional tool
correlates elevational information of streets, water bodies, and future sea-level rise impacts
on groundwater tables (Figure 1).

 D3.1

 Page 12

Figure 1: Flux.Broward.Land’s user interface in a standard web browser (Flux.Broward.Land, 2021).

In summary, the platform is a great example of a user-friendly application for cloud-based
urban planning and analysis. The emphasis was clearly placed on the platform’s simple
navigation and design aimed at stakeholders from varying degrees of expertise – from the
general public to planners. However, there were major challenges with respect to hierarchical
data clustering to elicit underlying similarities and differences within areas of interest beyond
simple visualisation of datasets across administrative boundaries.

Using contextual-specific data points and clusters generated on the platform, a practitioner
can leverage an information database of the platform to make better design decisions. The
integrated data-driven design methodology can be summarised in three key steps: (1) defining
design priorities and goals, (2) quantifying evaluation metrics and design parameters, (3)
design discovery, optimisation, and curation of design recommendations.

Through the Flux.Broward.Land example, it becomes clear that the development of a cloud-
based interactive platform comes along with many challenges such as data clustering, the
establishment of an information database (knowledge base), and the visualisation of the 3D
design and analysis outcome for stakeholders of diverse backgrounds. However,
Flux.Broward.Land remains a design-recommendation tool based on analysis. In the next
example, the focus is on a cloud-based platform that enables urban design and planning
(Section 2.2).

2.2 Cityplain – a cloud computing tool for urban planning

Cityplain is a cloud-based platform for urban planning that addresses affordable housing
within city extensions developed by Citythinking, an urban consultancy specialised in the
management and design of integrated urban solutions based in Sevilla. Cityplain allows
comprehensive scenario comparisons and cross-team collaborations to improve the design
decision-making processes. As a nature-based and data-driven solution, it aims at making
more sustainable design decisions for residential districts. The platform uses functional,
environmental and socio-economic key performance indicators (KPIs). These are optimised in
relation to the geometry of a design stage and also for Cityplain to learn from stage to stage
design patterns to suggest more precise and efficient design solutions. Thus, they are
integrated within an AI-based design recommendation system which is still under

 D3.1

 Page 13

development. Furthermore, the tool combines 3D geometry and numerical dataset from the
analysis. As a web-based platform, it can be accessed by team members and stakeholders,
allowing everyone to be part of the decision-making process (Cityplain, 2021) (Figure 2).

Figure 2: The web interface of Cityplain (Cityplain, 2021).

In summary, Cityplain is a web tool to inform stakeholders to make more efficient and
sustainable design decisions for residential districts in urban areas. It provides analysis results
from an evaluation process using KPIs and in the future version also by an AI-based ranking
system of KPIs. However, the tool is limited in terms of accessibility. It is a commercial software
solution and, thus, restricted to a limited user group. The high number of parameter inputs
makes for a complex interface, and not all users might be familiar with defining parameters
that require expert knowledge. Finally, the tool does not provide a convincing solution for
designing urban building infrastructure considering terrain modelling. However, a GIS
integration is foreseen for the next version. Currently, the design space is still on a plane
without information about the elevation of the terrain, hydrological, geomorphological, and
biological applications, which might be sufficient in the context of Cityplain, but such
information would be relevant for a sustainable development of urban environments and
buildings in ECOLOPES (Moore et al, 1991).

2.3 InFraReD – a cloud computing tool for urban planning

The Intelligent Framework for Resilient Design (InFraReD) was developed by many institutions
including the Austrian Institute of Technology, the City Intelligence Lab, and the Bauhaus-
University Weimar (InFraReD, 2021). It is a platform for intelligent and resilient urban design
based on Artificial Intelligence (AI). Machine learning (ML) models provide real-time feedback
on the performance of custom designs and guide decisions at every step of the process. The
performance is measured by Performance Indicators (Figure 3). InFraReD currently provides
feedback on solar, sunlight and wind performance. Additional analysis methods will be
included soon (Figure 4).

 D3.1

 Page 14

Figure 3: The web interface of InFraReD computes performance indicators for urban analysis (InFraReD tutorial,
2021).

Figure 4: The web interface of InFraReD computes the correlations between performance indicators (bottom,
left) and applies the analysis results as a heatmap on the urban area (InFraReD tutorial, 2021).

InFraReD fuses AI, Augmented Reality (AR), and computational design into one system. Thus,
it is not only digital but also a physical and intellectual space for urban planners (Figure 5).
Urban analysis inference models are trained by applications that are parts of the Rhino
ecosystem, such as Grasshopper, Ladybug Tools (Ladybug Tools, 2013), and other custom-
developed tools by the InFraReD development team (Duering et al, 2020). This is then passed
to OpenFOAM, a free open source CFD software developed primarily by OpenCFD Ltd, for
generating the CFD results (OpenFOAM, 2004).

 D3.1

 Page 15

Figure 5: Augmented reality interface as part of the InFraReD technology (InFraReD tutorial, 2022).

In conclusion, InFraReD is a cutting edge cloud technology for AI-based urban analysis in AEC.
Besides an interactive web-based user interface, it also provides a physical AR interface for
decision-makers. AI includes trained correlations between the most relevant performance
indicators for urban planners such as wind, solar radiation and sunlight with the possibility to
visualise analysis results in real-time for the user of the platform.

2.4 Rhino as an open development platform and Rhino.Compute

Rhino is a 3D free form modelling application developed by Robert McNeel & Associates, a
privately-held, employee-owned software development company based in Seattle. 3rd party
developers can extend Rhino’s functionality through freely available SDKs and there are more
than 800 plugins available to date. Rhino has become increasingly popular in the AEC industry
when Grasshopper, a visual algorithmic editor developed by David Rutten, became part of the
software in 2008 (Grasshopper, 2008). Nowadays, there are more than 600,000 active Rhino
licences and the user community in the McNeel forum has about 80,000 active users. Most
stakeholders are from the AEC industry and industrial design, but also footwear, jewellery,
and marine design are gaining in relevance. Rhino 7, the most significant Rhino version in the
development history of McNeel was released at the beginning of 2021 (Rhino 7, 2022). Its
success can be attributed to the inclusion of the new free-form modelling method based on
SubDivision, but also due to its possibilities to run inside other 64-bit Windows applications
(Rhino.Inside, 2021), e.g., the BIM modelling software Revit developed by Autodesk
(Rhino.Inside.Revit, 2021), and ‘headless’ as a cloud computing service (Rhino.Compute
Guides, 2021). Thus, Rhino 7 unlocked completely new modelling and development
workflows.

 D3.1

 Page 16

The following sections introduce Rhino’s open development framework (Section 2.4.1),
Rhino.Compute and the Rhino.Compute AppServer as a way to cloud-compute 3D geometry,
and to visualise it through a web-interface (Section 2.4.2). Section 2.4.3 presents the
capabilities of cloud-computing for parametric models using the Grasshopper Hops
component, and finally, additional Rhino and Grasshopper applications that are crucial for
enabling the computational workflow in ECOLOPES are discussed.

2.4.1 Rhino as a cross-platform development framework for the ECOLOPES plugin

The ECOLOPES platform interfaces with the user through the ECOLOPES front-end tools (Task
3.4, frontend development), which will be developed as a plugin on top of Rhino. Rhino is an
open development platform (Rhino Development, 2018). Thus, it provides a Software
Development Kit (SDK) as well as guides that can be applied across platforms – Windows and
OS X.

Plugin development for Rhino for Windows: The Rhino SDK is a set of royalty-free developer
resources for customising and extending Rhino for Windows. It provides documentation,
tutorials and tools, as well as software libraries. The Rhino C/C++SDK consists primarily of C++
headers and libraries that can be used to build Rhino extensions called Plugins. Plugins are
Windows DLLs that can be loaded into the Rhino process and interact directly with the Rhino
application (Rhino SDK, 2018).

Plugin development for Windows and for OS X: For the development of cross-platform Rhino
plugins, Rhino provides a .NET SDK called RhinoCommon to create compiled code libraries.
With this .NET SDK, a developer can create plugins for Rhino typically in C# or VB.NET. These
plugins can be as simple as adding a new command to Rhino, all the way to extensive systems
which introduce new UI elements and object types. Another SDK is included to create add-ons
for Grasshopper, which help in developing custom component libraries.

Grasshopper (GH) is a RhinoCommon (.NET) plugin for Rhino 7 for Windows and Mac. It was
written using Microsoft Visual Studio Professional using both VB.NET and C# source compiled
against the .NET Framework (Grasshopper component, 2018).

Another possibility to develop cross-platform plugins is Rhino IronPython (Iron Python, 2009)
which brings together the Python language and Microsoft’s .NET framework (Rhino.Python,
2018). For Rhino plugin development, IronPython is used, for instance, to perform tasks in
Rhino or Grasshopper, and to generate geometry using algorithms.

With respect to the ECOLOPES plugin, it means, that custom algorithms can be written either
as components for Grasshopper or a plugin for Rhino and these can be written in C#, C++, or
Python language.

2.4.2 Rhino.Compute and the Rhino.Compute AppServer

Rhino.Compute is an open-source project. It uses the Rhino.InsideTM technology (GitHub
Rhino.Inside, 2021), another open source project which allows Rhino and Grasshopper to run
inside other 64-bit Windows applications. In Rhino.Compute, Rhino SDK functions are
accessed via a cloud-based stateless REST API. Through Rhino.Compute developers can create
applications that manipulate Rhino (3DM files), solve Grasshopper definitions and python
scripts without needing to have Rhino installed on the client devices. Furthermore, it can call

 D3.1

 Page 17

over 2400 geometric operations from the RhinoCommon SDK remotely. With respect to the
ECOLOPES platform, Rhino.Compute offers the possibility to calculate process-intensive
Grasshopper algorithms for geometry generation and analysis within the cloud. Furthermore,
it allows cross-disciplinary team members to have access to a ‘headless’ Rhino version and to
work as a team simultaneously on the same project. Another advantage of Rhino.Compute is
that Grasshopper definitions can run as a backend service. In this context, the Rhino.Compute
AppServer is a node.js server acting as a bridge between client apps and private
Rhino.Compute servers. The app is intended to host one or more custom grasshopper
definitions and serve as the API that client applications can call to have definitions solved with
modified input parameters (Rhino.Compute AppServer, 2021). Thus, the Rhino.Compute
AppServer allows displaying parametric models in a web browser.

Rhino.Compute and the Rhino.Compute AppServer have become relevant for the
development of cloud-based design and analysis platforms in AEC. For instance, the
international architecture and engineering practice, Kohn Pedersen Fox (KPF), developed
together with other research institutions the KPF Urban Interface (KPF UI, 2022). It is an open
interface that uses urban data analytics for an informed and more efficient decision-making
process for building design and the planning of more sustainable cities. The KPF UI uses
methods for real-time visualising urban data analysis, and displays the data in a way that it is
understandable for users (Scout.Build, 2021). Furthermore, real-time analysis enables to
match stakeholder assumptions with data analytics (Figure 6). Another relevant example in
this context is Thornton Thomasetti’s Swarm app (Swarm, 2021) It uses Rhino.Compute and
the AppServer to connect designers in design teams for the design exploration and decision-
making process in a web browser.

Figure 6: Computational design model in KPF’s Scout web platform (Scout.build example, 2021).

In summary, using the Rhino.Compute AppServer in ECOLOPES would enable a hardware and
software independent visualisation of parametric models in a standard web browser. Also,
non-expert users could easily interface with the ECOLOPES design platform through this
application. Furthermore, the developed Grasshopper algorithms for geometry generation,

 D3.1

 Page 18

analysis and simulation could be used to run as a back-end service and results could be
displayed in real-time on the web or on a local machine.

2.4.3 The Grasshopper Hops component

Hops is a Grasshopper component in Rhino 7 (Hops, 2021). It can compute Grasshopper
definitions that are stored on a cloud or on a local server via file path or URL. Thus, it can call
Grasshopper definitions from an online algorithm library and solve them locally. Such a
process is not only useful to simplify complex algorithms, but also to share the same algorithm
with team members, and referencing it across multiple projects. All Grasshopper plugins can
run within a Hops function (Figure 7).

Figure 7: The Grasshopper Hops component solves another Grasshopper function without having to open it
(Hops, 2021).

By default, Hops uses a local computer to solve Grasshopper functions. However, it is also
possible to set up remote servers or virtual machines for Hops to call. Furthermore, Hops adds
external functions to Grasshopper, e.g. other programming languages and functions. This way,
Hops can call into CPython libraries including Numpy, SciPy, or TensorFlow. It can also work
alongside Rhino.Inside.CPython to give full access to the Rhino Common API.

In respect to the ECOLOPES platform, Hops is a useful component to cloud store and share the
ECOLOPES algorithms developed by other work packages (WP). Further, Hops can interface
with TensorFlow to introduce machine learning for training algorithms and models in
ECOLOPES.

2.4.4 Existing ECOLOPES-relevant Grasshopper plugins for urban design and analysis

To get a better understanding of the variety of algorithms that can be developed within
Grasshopper, the following section provides an overview and discussion about a pre-selection
of additional plugins:

Ladybug Tools for solar radiation analysis and for daylight optimisation: Ladybug Tools is a
collection of free computer applications that support environmental design in Grasshopper
(Ladybug Tools, 2013). It is built on top of validated simulation engines such as Radiance,
EnergyPlus/ OpenStudio, Therm/ Window and OpenFOAM. Ladybug Tools is written in
Python, which can be run on virtually any operating system and plugged into any geometry
engine. The project is open-source so Ladybug Tools Grasshopper components can be edited

 D3.1

 Page 19

and rewritten. For ECOLOPES, Ladybug Tools could be an important tool to compute solar
radiation (Section 4.4), and for computing human comfort (Section 3.5.2).

Decoding Spaces for urban design and analysis: Decoding Spaces is a free computational
analysis and design generation tool for street networks, plots, and buildings developed at the
Bauhaus-University Weimar (DeCodingSpaces Toolbox, 2017). As a Grasshopper plugin, its
algorithm library contains urban analysis methods for data analysis which can be combined
with stakeholder requirements (KPIs) to make more efficient design decisions in ECOLOPES.

Wallacei for evolutionary computation: Wallacei is a free evolutionary multi-objective
optimisation and analytic engine for Grasshopper that allows evolutionary computation in
design (Wallacei, 2020). As an open-source project, Wallacei can be extended. In ECOLOPES,
Wallcei could play a crucial role, as it already provides evolutionary computation algorithms
for generative design (WP5 and WP6).

Docofossor for terrain modelling: Docofossor is a free parametric tool in Grasshopper to
transform digital elevation models (DEM) by point, path, area, or surface. In contrast to
surface models, DEM are required for water retention modelling, land-use studies, or other
geological applications. The plugin is written in IronPython and can be extended. It was
developed at the Building Technologies department at ETH Zurich (Hurkxkens & Bernhard,
2019), (Docofossor, 2019).

2.5 Conclusions

The presented platforms, solutions, and technologies showcase the advances of real-time
cloud computing, visualisation of results in open web interfaces, and the implementation of
decision-support tools for urban design and urban analysis. They serve as a reference for the
design and development of the ECOLOPES platform that aims to build on top of compatible
frameworks and system architecture paradigms. Technically, the technical requirements
fulfilled by these state-of-the-art platforms, in particular, their abilities to optimise highly
demanding processes and to provide on-the-fly data analysis capabilities, are used as an initial
reference to define the functional and non-functional requirements that ECOLOPES platform
aims to support.

The review in this section has demonstrated that Rhino’s open framework provides an
extendable, and customisable environment for the development of such platforms, allowing
developers to deploy expert programs as a service, and chain programs from different
providers addressing distinct concerns of analysis, evaluation, simulation, and generation of
design components. For this purpose, it will be exploited in the development and integration
of the ECOLOPES platform.

3. THE COMPUTATIONAL FRAMEWORK IN ECOLOPES

WP3’s main responsibility is the creation of the ECOLOPES computational platform (SO1). In
order to design the architecture of the ECOLOPES platform, the data and computational flows
were examined in detail collectively with the developers of the different components and
constituents. In this exercise, the technical and non-technical requirements were taken into
account in order to fulfil the project’s technical objectives. In addition, a special focus was

 D3.1

 Page 20

dedicated to defining the data objects that are created, exchanged, and analysed in this
workflow, including Raster data, tabular data, dynamic data, static/referential data, voxel
models, CAD models, among others. The computational components developed in the other
work-packages were initially addressed as ‘black boxes’ to emphasise their input/output
requirements and their technical requirements in terms of middleware, computational
resources, and other concerns.

The results of this technical analysis applied to the envisioned workflow are encapsulated in
the computational framework. It describes the data-driven components and processes of the
ECOLOPES platform and provides a data governance framework and a high-level system
architecture design that defines and delimits the role of technical components supporting the
ECOLOPES design and analysis processes. It also explains how envelopes are technically
composed, and the roles and contributions of different components.

The computational framework essentially rearranges the assets of the ECOLOPES platform and
consolidates them into five major modules, each responding to specific data and functional
requirements. The modules are: the open and expert databases, the ecological model, the
knowledge base, the ontology, and the design generation and optimisation environment
(Figure 7).

 D3.1

 Page 21

Figure 7: The computational framework for the development of the ECOLOPES platform.

 D3.1

 Page 22

 From a workflow perspective, the system connects external data sources and also creates and
hosts expert datasets, which are then used as referential data on aspects such as species,
ecosystems, climates, geography, urbanism, and built environment. The ecological model
simulates an ecology under specific conditions and can be run iteratively and continuously to
identify correlations among conditional variables, in particular variables with geometric
(design) significance. This generated elemental knowledge pertains to the system ontology,
which identifies and describes design-relevant relations and different variables of the ecolope.
The ontology builds such relations on top of this generated knowledge (in addition to other
expert knowledge), and is consulted by the design, analysis, and simulation programs. These
aforementioned components constitute the data and knowledge management part of the
ECOLOPES platform. Together, they aim to capture, structure, generate, interrelate, and serve
the fundamental data concerns that are exploited by the ECOLOPES services and tools in an
ad-hoc manner.

The following sections introduce the five individual modules of the computational framework
in more detail and explain how they are interlinked.

3.1 Open and expert databases

Open databases are publicly available data sources on species, soil, abiotic concerns, built
environment, available local 3D assets, and other concerns, which are pertinent to the
composition of the expert databases and occasionally to the execution of the ecological
models. In contrast, the expert database, it contains datasets that have been compiled from
open sources and expert models to capture computationally-relevant concerns (e.g. species
pools, KPIs, etc.), or to describe ECOLOPES-related concerns, such as human-nature
interactions (Figure 8). The expert database is regularly queried by ecological models.

While open databases are already available through 3rd-parties, the expert database can be
implemented as an integral module of the ECOLOPES platform, using a data storage
infrastructure deployed in the cloud in order to facilitate and govern data access and use. In
all cases, this data is considered largely static from a design perspective and will be managed
as such.

Figure 8: The open and expert databases of the ECOLOPES platform.

 D3.1

 Page 23

3.2 Environmental models (WP3–WP7)

Those models establish the connection between the architecture and the ecological model,
providing necessary data (such as incoming radiation, soil depth). They are currently
developed in the MiMo experiment and are further described in Section 4.4 of this deliverable.

3.3 The Ecological Model (WP4)

The ECOLOPES model is a composite spatial-explicit model that models the interdependent
spatial and temporal dynamics of the soil, microbiota, plants, and animals, in response to the
regional species pool, the geometry of the building, the local abiotic conditions, the substrate
used to design the ecolope, and the management. The biological units of the model are plant
(PFG) and animal (AFG) functional groups, i.e. groups of species sharing similar characteristics
in the way they respond to and influence their environment. The model is based on a multi-
scalar approach. The regional ecological model determines which FGs of the species pool have
a reasonable chance to colonise the ecolope according to its location in the city. The local
ecological model applies a second filter on these species based on the abiotic and biotic
conditions delivered by the ecolope.

Essentially, the ecological model integrates all elemental models developed to address
concerns related to ecology. These individual models are tightly integrated into a composite
model because they are largely interdependent. Their interfaces also have been standardised
by definition, so that they support the same data model in terms of input and output. This
composite model can be deployed on an independent server located at, and operated by
TUM, as part of its computing cluster. It can interface with other components of the ECOLOPES
platform through secure HTTP requests. In addition, stable versions of the model can be
installed on a cloud server for more stable deployment.

3.3 Knowledge Base (KB)

The Knowledge Base (KB) is a data storage system used to store structured and unstructured
data resulting from the execution of the Ecological Models and the selected KPIs. It is designed
to support the discovery and valuation of correlations between different data variables,
namely between architecture-related variables and ecologically-related variables. Its role is to
cumulate and statistically analyse the output of the ecological models at each execution,
including the resulting environmental and ecological characteristics of the modelled ecolope
(e.g. radiation input, soil depth, water retention, composition and location of different plants
and animal functional groups, etc.). The knowledge base can be queried to provide statistical
correlations on-the-fly that befit particular criteria (e.g. location, design parameters, climate
parameters, ecological conditions, etc.). The knowledge base will be primarily populated by
the results of the MiMo experiment, which will aim to run simulations en-masse to cover
variations along with general, generic, and popular variables.

Technically, the knowledge base can be implemented as a cloud-based SQL database with a
web-enabled interface, which allows other remote systems to execute queries and retrieve
statistical results. It will implement the ECOLOPES Information Model (EIM) that defines the
input-output parameters of the Ecological Models, which integrate all the computationally-
significant data fields related to architecture as well as ecology.

 D3.1

 Page 24

3.4 The EIM ontology (WP4)

The EIM ontology is the reasoning framework for the ECOLOPES platform. It will leverage
information from the KB and will capture existing patterns that have been proposed to define
an annotation model that can be queried by other components of the computational
framework. The design principles of the EIM ontology are described in Deliverable 4.1. The
EIM Ontology will interface with expert data and the design generation and optimisation
environment through an SQL database. For the EIM ontology, the Protégé framework is
envisioned. This allows for flexibility in integrating the ontology with other databases in the
system and developing interfacing capabilities for other ECOLOPES services to consult the
Ontology and retrieve specific results.

3.5 The design generation and optimisation environment

The design generation and optimisation environment is a CAD environment built on top of
Rhino / Rhino.Compute technologies (Section 2)(Figure 9). All algorithms for design
generation, environmental and ecological analysis, and design optimisation are supported by
the system and can be deployed as part of the ECOLOPES platform. Components that export
data or save calculations on the platform’s data storage system will be hosted in the cloud (at
least, their backend services) in order to support more efficient security and data transaction
management. In the following section, the components of the design generation and
optimisation are explained in more detail: (1) Architectural design; (2) analysis; and (3)
optimisation.

Figure 9: The design generation and optimisation environment.

3.5.1 Architectural design components (WP5)

The development of a generative algorithmic process for designing an Ecolope is conducted
in WP5. WP5 has three objectives: 1) development of a Voxel model that links the EIM
Ontology from WP4 with the computational model (CAD model); 2) development and
integration of a generative algorithmic process within the Rhino and Rhino.Compute
framework implemented by McNeel; 3) validation of the algorithmic process that delivers the

 D3.1

 Page 25

basis for the work in WP6 and WP7. Objective 2 entails the generation of design variations,
from which a selection will be optimised in WP6. The algorithms for 1) generating initial design
variation and 2) filtering and ranking the outputs will be connected to the CAD model. D5.1
describes the development process of the ECOLOPES algorithm. This includes, 1) the
identification of relevant data sets (terrain, maps, networks, volumes); 2) identification of an
approach to a generative algorithmic design process; 3) identification of principal approaches
to linking the algorithmic process to the ECOLOPES voxel model and EIM Ontology. The
description of the key datasets relates to the first part of the algorithmic process up to the
detailed design process. The Voxel model operates as an interface between different datasets
that can incorporate expert information. The Voxel data will be written in an SQL database in
different resolutions.

3.5.2 Analysis components (WP3–WP7)

The analysis components are a series of existing and new Grasshopper components which will
become part of the ECOLOPES plugin (front-end tool). They contain simulation modules that
address environmental analysis; as well as human comfort. However, the main simulation will
be conducted by the Ecological Model which computes the spatial dynamics of multi-species
for one specific design outcome.

Human comfort simulation (Thermal Comfort) (WP6 and WP7): In order to evaluate thermal
conditions and their impact both on the environment (in particular on buildings and their
“living” components) Ladybug Tools and Morpho components will be used to run simulation
models potentially comparable with the simulations that will be conducted in the validation
process (WP7).

Environmental Model simulation components (WP3–WP7): These new Grasshopper
components developed by WP3-WP7 will compute the a) connectivity for animals to move
around, b) soil placement, c) solar radiation, and d) water retention based on one envelope
design. These models are more extensively detailed in the current deliverable, section 4.4. The
analysis results will be visualised and results provided for optimising the design outcome.

Ecological Model simulation component (WP3 and WP4): This new Grasshopper component
allows running the Ecological model within Rhino’s CAD environment. It will return simulation
results in respect to the ecosystem for various design solutions. It is worth noting that the
encapsulation of these analytical components as Grasshopper programs (especially the
Ecological Model) will help to optimise the platform during run time as service-oriented
architecture, and instantiate and replicate the platform’s backend to scale or to respond to
specific custom applications or use cases.

3.5.3. Simulation and optimisation components (WP6)

The optimisation process of ECOLOPES design outcomes is also a generative design process.
Thus, it is similar to the design generation process in WP5, as it relies on evolutionary
computation algorithms. For the optimization of the ECOLOPES design, there are the following
three steps: 1) Design optimization setup; 2) results from analysis; and 3) filtering and ranking
of outputs.

1. Design optimisation setup: The simulation and optimisation components in WP6 will
be an integrated workflow that utilises both multi-objective optimisation (MOO)

 D3.1

 Page 26

algorithms and multi-attribute decision-making (MADM) strategies. As such, the
simulation will be the standard set-up dependent on the algorithm or Grasshopper
component used, but weights will be established for the fitness objectives (Key
performance indicators - KPIs), in relation to MADM strategies to establish hierarchy
and priority.

2. Results analysis: The results of the simulations will be analysed through the
visualisations available by the selected optimisation algorithm or Grasshopper
component but will also integrate an additional process of calculating KPIs through
mathematical formulation using the numerical outputs of the Analysis models (Human
Comfort Simulation, Environmental Models, and Ecological Model). The results of
these calculations will contribute to the optimised fitness values.

3. Filtering and ranking of outputs: The filtering process will be conducted through an
algorithm that eliminates outputs that do not fit the initial fitness objective thresholds
generated in the architectural design phase. The generated range of Pareto solutions
(optimised solutions with more than one objective) will then be ranked using a
selected MADM strategy using the weights that were established in the design
optimisation setup. This algorithm will rank the generated outputs based on the
weights of the fitness objectives (KPIs) to showcase the best performing designs in
order.

However, the optimisation process includes not only the optimisation of the envelope design,
but also the voxel model and the KPIs for each iteration. The optimised values (data and KPIs)
will be encoded into the respective voxel cells through the same algorithms employed in the
architectural design phase which will then be exported as raster information, if running
through an iterative loop, or .csv in the case of a final design selection. Thus, the final outcome
of the computational workflow is a selection of envelope design with the corresponding
metadata stored in a voxel model.

3.3 Conclusions

The computation framework based on Rhino establishes the core processes supported in the
ECOLOPES platform, and provides a roadmap for the integration and deployment of the
computational components developed in WP3, WP4, WP5 and WP6. From a system
architecture perspective, the framework also identifies and defines the data connections and
data exchange mechanisms required for integrating the ECOLOPES platform.

In particular, this exercise identifies two main parts of the ECOLOPES platform with different
technical requirements, working asynchronously to a large extent: 1) the data and knowledge
management layer, and 2), the design, analysis, and simulation services.

In the coming project period, the design and implementation of both parts can progress in
parallel, with connections established through the ontology and the system’s data warehouse.

 D3.1

 Page 27

4. THE KNOWLEDGE GENERATION FRAMEWORK AND THE MIMO

EXPERIMENT

The acronym MiMo stands for MInimalist MOdel. The MiMo experiment was conceptualised
to address the knowledge gap identified by the consortium on our ability to understand and
predict how design can drive and can be used by the ontology to drive the development of the
ecolope ecosystem. The set of ecological processes and causal relationships encapsulated in
the ecological model is too complex to enable us to a priori predict the consequences of a
change in design on all or part of the ecolope ecosystem without testing the design by running
the full model. Such an approach is hardly compatible with the idea of the EIM ontology which
aims to guide design toward given objectives. The MiMo experiment, therefore, aims to create
the knowledge necessary to inform the design process to go toward given ecological and/or
human comfort objectives. The MiMo experiment will address this objective by 1) enabling
the initiation of architectural and ecological variables to be meaningfully correlated, and 2)
serving as an open-ended accumulative knowledge generator for the ECOLOPES project.

In computational terms, the MiMo experiment aims to agilise the consolidation, prototyping,
and deployment of the data and knowledge management layer of the ECOLOPES platform,
focusing primarily on integrating the elemental ecological model, streamlining their execution,
and connecting them with the data warehouse to accumulate their results. The MiMo
experiment will run the environmental and ecological models on a continuous and linear
variation of input data to populate the project’s database and create the necessary data
threshold to identify meaningful correlations between architectural or design variables and
ecological variables.

4.1 Goals of the MiMo experiment

In its first version, the MiMo experiment will enable us to understand how given building
geometries impact the environmental conditions (such as soil depth and water retention,
radiation input, and general connectivity of the ecolope) and the structure and composition
of the ecological communities on the ecolope. The objective is therefore to use the experiment
to extract general relationships between architecture and ecology. These relationships will
then be used as possible architectural options to guide design in the generative design and
design optimisation processes of the computational workflow (see Section 3 of the present
deliverable).

So far, the knowledge directly linking architecture to ecology exists only in fragmented and
specific ways. For instance, we might know from the literature review the needs in terms of
food and shelter resources of a given bird species. Such knowledge gives hints to architects to
create artificial nests of the right shape and height to potentially attract the target species.
However, the artificial nest may actually enable an individual to live on the building only if a
number of other conditions are met, i.e., if the environment provides the other factors
necessary to the species to complete its life cycle, such as access to enough food, mates, and
acceptable probability of death. The MiMo experiment will help to understand how the
geometry of the building can help support given functional groups or types of ecosystems
while accounting for all these important factors that interact with the species life cycle.

 D3.1

 Page 28

The MiMo experiment relies on the use of the different environmental and ecological models
developed or applied in the computational workflow for the development of the platform (see
section 3 of the present deliverable). It will simulate the environmental conditions and ecology
of ECOLOPES designed with a high number of simulated building geometries. These simulated
geometries will be built to cover the range of simple possible ECOLOPES geometries in a
multiscalar approach, including variations going from the microscale (1 to 100 cm scale) to the
macro-scale (general shape) of the building.

We envision the MiMo experiment to be extended toward the exploration of other
architectural questions, for instance to better understand how to change the geometry of a
building to support given functional groups or ecosystems under various climatic conditions,
or the role of management.

4.2 General structure of the MiMo experiment

The MiMo experiment is composed of two computational steps. The first step explores how
geometry influences the abiotic conditions on the ecolope, using a set of environmental
models for soil erosion, water retention, radiation, and connectivity (Figure 10). It will
contribute to answer simple but important questions regarding the environmental conditions
induced by given geometries (and which will then support the ecolope ecosystem) such as:

● Can the geometry of the building maintain soil where we place it, or will the soil erode
and accumulate in other places?

● Does the geometry of the building enable water to be stored/retained in the soil in
some areas, or does it directly flow down?

● How does the geometry of the building modify the input radiations on the ecolope?
● To what area (m²) does the geometry of the building allow access for a walking animal?
● Which geometries enable to optimise part or all of these different aspects?

The second step explores how the environmental conditions induced by the geometry can
drive the development of the ecolope ecosystem and promote certain plant or animal
functional groups and no others. The two steps together will enable us to build the necessary
knowledge and hopefully generalities on the response of the ecosystem to the building
geometry in different environmental contexts.

 D3.1

 Page 29

Figure 10: The computational workflow in the MiMo experiment.

4.3 MiMo inputs

The MiMo experiment requires a number of inputs in a given format for the involved models
to run. Understanding the influence of some of these input variables identified as important
by the consortium, e.g., variables describing the geometry of the building, on the ecological
variables is the main objective of the experiment. These important input variables will be used
as parameters to be varied and tested in the experiment.

The experiment will allow collecting the environmental and ecological outputs of manifold
combinations of parameter values. The combination of tested parameter values will be
created to cover the range of possibilities of each chosen parameter, with respect to the
values of the other parameters (some combinations might be unrealistic). Some interactions
between parameters will also be targeted by the experiment. For instance, we will investigate
the influence of the interactions between the different geometry parameters on the ecological
variables (Section 4.3.1). This section details the first parameters that will be targeted by the
experiment.

From 3D CAD to raster data – geometry parameters: The variables describing the geometry
of the building are the first ones targeted by the MiMo experiment. Geometry is expected to
influence the environmental conditions on the ecolope (e.g., connectivity, radiation input),
and therefore the species that can live on it. This section introduces a new method of how we
envisioned correlating geometry and the corresponding metadata for a defined analysis grid.
Thus, in MiMo, an initial range of geometry typologies (e.g. box, sphere, cylinder, cone,
tetrahedron, etc.) were programmed within Rhino’s visual programming environment and
divided into voxel units of two different sizes: 1 m × 1 m × 1 m, and 10 m × 10 m × 10 m (Figure
11).

 D3.1

 Page 30

Figure 11: Grasshopper algorithms that generate different building typologies and ‘voxelise’ them into units.

In the next step, an algorithm extracts relevant geometry parameters’ values, i.e., surface
roughness, surface area, surface angle/steepness, and building massing. The Rhino
environment then enables us to vary the geometry parameter values to cover their range of
possibilities, and ultimately explore how their variations impact the ecology (Table 1). They
are then stored within a database that can be exported as a .csv table or a set of rasters. The
rasters are then used as input to the models (Section 4.4).

 D3.1

 Page 31

Table 1: Geometry parameters to characterise the voxel cell developed by WP5, WP6, and WP7.

Geometry parameters Description Range Units

1. Surface roughness Deviations of the
normal vector of a real
surface from its ideal
form

0 - 1 Average Roughness (Ra)

2. Surface area Total area of a single
surface

 Area (m2)

3. Surface angle/ steepness Angle between the
surface normal and a
reference plane

0 - 180 Degree (°)

4. Building massing General building shape,
form, and size (height
and planar dimensions)

High rise - Medium
Rise - Low Rise -
Single Storey

Volume (m3)

4.4. MiMo models

In the first computational step of the experiment, four MiMo environmental models compute
the soil depth, water retention, solar radiation, and contribution to connectivity of each voxel
cell based on given inputs. Building-scale values will be computed to evaluate the general
impact of the geometry for each of these environmental conditions (Table 2). In the second
step, the local ecological model will use the geometry and the environmental conditions
generated in the first step to model the responses of soil development, plants, and animals to
the geometry.

Table 2: Environmental parameters computed by the four environmental models to characterise each voxel cell
and the overall environmental performances of the geometry (developed by WP3– WP7).

To compute Description Range Units

Soil depth per voxel cell (volume) Soil
remaining/accumulate
d on a cell after erosion

0-N/A Volume, mm3, cm3, m3

Connectivity Modelling of
connectivity network
based on Graph theory

0-1 Probability of connectivity
(per voxel cell and for the
entire ecolope)

Solar radiation Solar radiation for a
specific geometry
(Shadows, heat)

0-5,7 kWh/m2
depending on the
geographical
location

Global Solar Irradiation
(kWh/m²)
Incident radiation

Water retention/Hydrological model Water fluxes and
retention

N/A Water Retention Value
(WRV)

 D3.1

 Page 32

4.3.1 The soil depth model

Soil is required for microbiota, plants, and is used as shelter by some animals. The soil depth

model computes how much soil can be placed on and retained by a certain geometry. Spatially-
explicit soil erosion modelling, as enabled by the Universal Soil Loss Equation (USLE), usually
requires information on run-off, slope, erodibility of the soil, vegetation, and practices (e.g. El
Jazouli et al., 2017). A model derived from this equation, also simulating soil accumulation
(see Jakubínský et al., 2019 for a model comparison), can easily be applied to the ECOLOPES
framework after soil erodibility parameterization, a necessary step because on an ecolope the
soil will most probably be an artificial substrate and not a natural soil. The model outputs the
soil volumes for each voxel cell.

The soil depth model will use a surface model as input. We will test how surface roughness
values (Ra) and surface inclination influence the resulting distribution of soil depth over the
ecolope. In the next step, voxel cells characteristics with the potential to retain soil are
selected and the volume of the soil is calculated for each voxel cell (Figure 12 and 13).

Figure 12: An approach to compute the surface roughness value Ra through a parametric model in
Grasshopper.

Figure 13: An approach to compute the angle of the surface inclination through a parametric model in
Grasshopper.

 D3.1

 Page 33

4.3.2 The connectivity model

The connectivity model proposes a very general approach for connectivity based on graph-
theory, where the ecological connectivity network is inferred using the least-cost path
approach to connect habitat patches (Graphab:
https://sourcesup.renater.fr/www/graphab/fr/home.htm) (Foltête et al., 2012). The
connectivity will be computed for a walking animal, defining cells occupied by soil (from the
soil depth model) as potential habitat/resource. The resistance of the 3D surface to
movements of the animal will depend on the slope between voxel cells. The underlying
assumption behind computing a general connectivity network based on a walking animal is
that walking animals are the organisms that are more likely to be limited in their ability to
move through the 3D surface by steep slopes. Thus, if a walking animal can reach an area, it’s
very likely that most organisms can reach it.

The connectivity model informs which voxel cells and path(s) can be used by the walking
animal for reaching these areas. The outputs are:

● A map giving the probability of connectivity of voxel cells occupied by soil (habitat
patches) (PC, Saura et al., 2007)

● A connectivity map based on the number of times a voxel cell is part of a path (corridor
function)

● A general probability of connectivity for the entire 3D surface that reflects the
probability that two points are taken randomly in the area are connected

● A 3D connectivity grid with the CAD environment

4.3.3 The solar radiation model

Besides soil, light is required for plant growth. Solar radiation model extracts light values based
on the input geometry using the Ladybug Tool in Grasshopper. The workflow for the solar
radiation simulations is mainly composed of three steps:

Firstly, a location for the simulations has to be set up. Once the location is defined, an .epw
file is needed to import climatic data: in this script, the open-source database used is directly
connected with Ladybug Tools: https://www.ladybug.tools/epwmap/ (Figure 14). After
importing the set of weather data, data concerning solar radiation are available for the
simulation.

At this stage, the second step is related to the definition of the envelope shape (coming from
the GH script previously defined) and the ground (e.g. planar surface, slope, etc), on which the
distribution of solar radiation will be analysed. Finally, the last step is related to the definition
of the grid size, depending on the resolution that we want to achieve with simulations (e.g. 1
× 1 m2 or 5 × 5 m2). Outputs of this workflow are specific values of incident radiation (kWh/m2)
for each cell of the mesh composed by envelope and ground.

https://www.ladybug.tools/epwmap/

 D3.1

 Page 34

Figure 14: Solar radiation values computed for each voxel cell within the model.

4.3.4 Water retention model

The water retention model computes how much water can be retained by a certain
geometrical configuration. As an input, it would need either a Digital elevation model (DEM,
a 3D computer graphics representation of elevation data), NURBS, or a polygon mesh model.
DEM is often required for flood or drainage modelling. Docofossor, a Grasshopper plugin
(Section 2.4.4) uses DEMs as input for analysis (Sun et al, 2020). However, there are existing
examples of how water retention models can also be simulated in Grasshopper using NURBS
and mesh geometry.

4.3.5 The local ecological model

The ecological model is described in the current deliverable in section 3.2 and more
extensively in the deliverable D4.1. In the MiMo experiment, the ecological model will likely
be run over a 50 or 100 years’ period to simulate in a spatially-explicit way the state of the
ecolope ecosystem in terms of soil types, plants and animal functional groups distribution.
These spatially-explicit outputs will be used to understand how the fine-scale geometry
influences the ecological characteristics of the voxel cells. The ecological outputs will also be
used to compute building-scale ecological variables meaningful to reflect important ecological
processes. For instance, the higher trophic level present on the ecolope could be used to
reflect if and how the geometry influences the trophic structure of the ecological community.

4.4 The Knowledge base (KB)

The data produced by the MiMo experiment will fill up the knowledge database, where each
line contains a unique combination of parameter values and the resulting environmental and
ecological outputs. This knowledge base will be used to extract correlations between the
tested parameters and the environmental (soil depth, water retention, input radiation, and
connectivity) and ecological variables (e.g., distribution of soil types, plants, and animal
functional groups, functional group richness). Such a database is crucial as a starting point for

 D3.1

 Page 35

gaining knowledge about the relationships between geometry and urban ecology on an
ecolope. This knowledge will be then leveraged into the ontology (see D4.1).

4.5 Conclusions

The conceptualisation and design of the MiMo experiment allows consolidating the data and
knowledge management layer of the ECOLOPES platform, and elicits its general technical
requirements in terms of data, data structures, computation, chaining and integration, and
other concerns. By the end of the related technical work, a first stable version of the ecological
model will be deployed and integrated with the platform’s data warehouse, and mechanisms
will be put in place to execute the model autonomously and continuously.

5. SOFTWARE DEVELOPMENT APPROACH FOR ECOLOPES

The software development approach adopted in ECOLOPES takes into account the type of
applications, their maturity, and intended usage and lifecycle. Whereas Agile-based methods
are best suited for developing mainstream applications and sustaining a healthy software
development pipeline, they are not generally well suited for experimental development
intended to prototype the results of research and innovation activities. The collaborative and
tentative nature of software development in this context also does not fit well with waterfall-
based methodologies. Instead, we choose to manage software development based on an
incremental approach, in which specific sections or components of the platform are designed,
prototyped, integrated, and evaluated in each iteration. This approach also allows us to design
and develop several sections in parallel, a process supported by the early definition of the
system architecture, common data models and interfacing mechanisms.

Accordingly, an overall system architecture was first designed, facilitating the deployment of
the ECOLOPES platform’s digital infrastructure and its main components. On top of the
infrastructure, a cloud-based environment that supports the deployment of algorithms and
geometric computation components that have been developed and deployed (Section 7). This
includes data warehousing capabilities and a collaborative environment where different
components can be tested and refined. In the current iteration, while this environment is
consolidated and leveraged to help develop the project’s analytical components, parallel
efforts are invested to integrate the ecological models and deploy them, and operate them to
generate knowledge as described in section 4.

5.1 Data and process specification for all components

Data and process specification for all components of the platform facilitates a common
computational workflow and to work in an agile manner on parallel development efforts.
Furthermore, by defining all inputs and outputs, a better understanding between the
interdisciplinary development groups can be fostered and development becomes more
efficient from the beginning. Table 3 demonstrates an overview of the collected information
on components and data specifications to be later integrated into the platform.

 D3.1

 Page 36

Table 3: Overview of the data and process specification for all components.

Component Description Inputs Outputs

ECOLOPES Information Model
(EIM ontology)
(WP4)

The reasoning framework for the ECOLOPES
platform that leverages information from the
KB and makes it available for design.

KB Web Ontology
Language (.OWL.)

The abiotic environment and
architecture dataset
(WP4, WP7)

Georeferenced datasets (abiotic conditions,
socio-economic) and local building features
(city scale and local scale) as well as
information on normative constraints and
design that aim to enable a comprehensive
description and evaluation of a potential
ECOLOPES site and serve as inputs for the
modelling and simulation processes.

International and
national geo-
referenced
datasets.
EPW, GIS, OSM

Open Database
Datasets (WP4
and WP7).

Environmental models
(WP3-7)

Georeferenced dataset describing the
environment (e.g., incoming radiations and
soil depth per cell) as a result of 3D geometry
and other environmental variables (e.g.,
incoming radiations, precipitations).

Open databases,
Raster datasets, 3D
geometry

Raster datasets

Ecological model
(WP4)

Model of the interdependent spatial and
temporal dynamics of soil/microbiota, plants
and animals, as a response to building
geometry, abiotic conditions and substrate.
Data to parametrize the model is retrieved
from open databases (GBIF, TRY, PREDICTS,
BIEN, SoilGrids) and experiments

Raster datasets
from open
databases and
from
environmental
models

Combined C++
model,
Raster datasets

The microbiota dataset
(WP4)

The experiments provide data on microbiota
composition in different soils that are used
by plants and animals. Most importantly, the
microbiota model data will provide variables
for catalysts for nutrient/carbon cycling and
plant growth promotion to establish rates of
soil development

Field experiments Values for soil
development, soil
model
parametrisation.

The human dataset
(WP6 and WP7)

Analysed data on human comfort conditions,
physiological, psychological and social
benefits of nature to humans, with a focus on
various health and well-being and comfort
outcomes (including ecosystem services).

Literature review,
3D model (3DM/
GH file)

Grasshopper file,
metadata stored
in a voxel model.

The KB
(WP3-7)

Resulting data from the MiMo outcome
(Ecological and Environmental Models).

Ecological and
environmental
model outcome.

Correlations
between
ecological,
environmental
and architectural
parameters.

The design generation and
optimisation environment
(WP5 and WP6)

A set of algorithmic tools and processes
which will run as a backend service and that
will be used by the front-end tools. Based on
the design outcome, the toolset will be
validated by WP7.

OWL/JSON
3D terrain model,
requirements from
the stakeholders,
fitness objectives

3D model
Voxel model
.CSV, .JSON

 D3.1

 Page 37

ECOLOPES front-end tools
(WP3)

User interface with the developed data-
driven recommendation system through two
front-end tools based on the Rhino platform.
Through the tools, the user can access site-
specific real-time data from the data
warehouse and algorithms from the design
generation and optimisation environment.

GH algorithms
were developed by
WP5, WP6, WP7.
C++ programs
developed by WP4.

Grasshopper
plugin,
A web interface
for ECOLOPES
design and
design-
recommendation.

ECOLOPES Multi-Species
Habitat (WP7)

Feedback from real-world design cases at the
four different sites to validate the developed
data-driven Recommendation system from a
multi-species perspective, will provide real-
world parameters for optimisation (WP6) to
achieve more realistic design outcomes.

Real-world
prototypes, 3D
models in VR

Results from
monitoring in VR
and from Real-
world prototypes.

5.2 Conclusions

The specification of data and processes reveals a broader understanding of how the
components can be developed in smaller, or in the case of the Ecological Model (see D4.1)
and the Design generation and optimisation environment (WP5, WP6) even in a larger cluster.
Data inputs and data outputs are defined and thus, a messaging infrastructure to allow
different systems to communicate through a shared set of interfaces can be developed in a
parallel process. However, first, the system architecture for building the ECOLOPES platform
needs to be designed. It is presented in the following Section 6.

6. THE ECOLOPES SYSTEM ARCHITECTURE

The ECOLOPES system architecture (Task 3.1, ECOLOPES System Architecture) implements the
conceptual model of the ECOLOPES platform. It is designed to satisfy the overall functional
requirements of individual processes encapsulated in the platform. In order to implement the
ECOLOPES platform, cloud-based service-oriented architecture is selected to leverage the
scalable resources of cloud computing and to provide the necessary flexibility and modularity
for the implemented system to grow and adapt in later stages of development that aim to
increase its technological maturity level. The use of cloud architecture to deploy the
ECOLOPES platform also enables the configuration of specialised machines for each concern.

Three different components constitute the core of the system architecture: a data warehouse
server capable of storing shared data created for/by the system services; a geometric
computation environment where specialised geometric computation programs can be
deployed as services; and an ecological simulations server for running specialised programs
that implement ecological models and non-geometric computation. Together, these three
components constitute the backend of the ECOLOPES platform, which support the expert
execution of designed workflows in stages.

In addition to these three components, the ECOLOPES platform includes the user machine,
which houses the user tools that connect to the backend and use its services. The tools allow
general users to incorporate ECOLOPES services in their workflows. The user machine can be

 D3.1

 Page 38

implemented both as a personal computer or a cloud-based server as a shared environment
(Figure 15).

Figure 15: The architecture model of the ECOLOPES platform.

This model of the ECOLOPES system architecture is shown in the following Figure 16.
According to this design, the geometric computational environment orchestrates the relation
between the user machine and the system backend. It channels requests to the ecological
simulations environment and manages the related data input/output from the Data
Warehouse. The architecture model also supports direct communication between any of its
four conceptual components.

 D3.1

 Page 39

Figure 16: The first version of ECOLOPES functional architecture and its components.

 D3.1

 Page 40

Accordingly, a first version of the functional system architecture was designed to implement
the architecture model taking into account the project’s development plan. Consequently, the
focus of this first version of the system is on data management, deployment of main
components (meeting their technical requirements), and establishment of the data exchange
pipeline among the system constituents. The design of this first version is shown in the figure
above, where components pertinent to the Data Warehouse conceptual module are visualised
in black, ecological and computational algorithms and programs are represented in pink and
evaluation components in yellow. These components are discussed in the following
subsections.

6.1 The software components

The ECOLOPES system architecture has five main components, which are introduced and
described in more detail in this section. 1) The EIM ontology with the Ecological Model; 2) the
ECOLOPES algorithms, which link the generated datasets of the EIM Ontology with geometry
objects; 3) the ECOLOPES data warehouse, which provides data to process the ECOLOPES
algorithms; 4) the ECOLOPES computational simulation environment, which iteratively
optimises design outcomes based on KPIs; 5) the ECOLOPES front-end tools that enable to
interface with the data-driven recommendation system; and ultimately 6) the ECOLOPES
Multi-Species Habitat which evaluates the ECOLOPES from the perspective of all inhabitants
(plants, animals, microbiota, and humans).

6.1.1 The EIM ontology component

The EIM ontology is a key component for the data-driven recommendation system. It
integrates the following five modelling components into one system by modelling its
relationships to index and fuse data to form the basis for the development of the ECOLOPES
algorithms and the ECOLOPES computational simulation environment. The generated models
are interlinked with established feedback loops. All models refer to the same spatial (site-
specific) and temporal (monitoring, assessment time) parameters. For a further description of
the modelling approach, see D4.1.

6.1.2 The ECOLOPES algorithms component

The goal of the component is to create a link between the EIM ontology and the computational
model in Rhino through a voxel model. The computational model is a set of algorithmic and
evolutionary computation processes which will run as a backend service and that will be used
for the front-end tools (the Rhino plugin). Based on the design outcome, the algorithms will
be validated. For a further description of the evolutionary generative design process and the
voxel model, see D5.1.

6.1.3 The ECOLOPES data warehouse component

The component stores all ECOLOPES-relevant data and makes it available to the algorithms-,
computational simulation environment, and front-end tools components. It also stores
geometry data which includes the voxel model, generative design outcomes, 3D analysis and
simulation results, and metadata.

 D3.1

 Page 41

6.1.4 The ECOLOPES computational simulation environment component

The component converts the data-integrated computational model (Section 6.1.3) into a
computational simulation environment by computational simulations (generative design and
optimisation), multi-criteria analysis and rating strategies that enable decision-making
processes for the design cases (by defining KPIs and interrelationships/hierarchies between
them + expert knowledge); and second, by validating the computational workflow to ensure
integration and interoperability through the design cases in preparation of design validation
(envelope and building block evaluation).

6.1.5 The ECOLOPES front-end tools component

The component enables users to interface with the developed data-driven recommendation
system through two front-end tools based on the Rhino platform. Through the tools, the user
can access site specific real-time data from the data warehouse and algorithms from the
algorithm component to visualise the simulated output of the EIM Ontology for a specific
period of time, and to apply it to a building design at the selected location. The tool
recommends a series of evaluated and optimised design outcomes based on the ECOLOPES
system to the user that consider the requirements of all inhabitants equally. Thus, it helps the
user in the design decision-making process.

6.1.6 The ECOLOPES Multi-Species Habitat component

The component provides feedback from real-world design cases at the four different sites to
validate the developed data-driven recommendation system from the perspective of all
inhabitants (humans: comfort and well-being; plants + animals + microbes: 12 months Building
Block analysis, and by comparing the outcomes for all sites. It will provide parameters to the
computation simulation environment component for further optimising to achieve the best
design outcome.

6.2 Advantages of the drafted system for the ECOLOPES project

The architecture design applies a separation of concerns between data, geometric
computation, and ecological simulations, and addresses the specific technical requirements
of each separately. This resulted in the definition of the aforementioned components.
Specialised machines can be deployed to support each component, thereby allowing the
system to scale, and evolve easily. This also facilitates platform instantiation and deployment
in different environments, as well as its seamless integration with other complementary
platforms or programs that run on top of Rhino and Grasshopper or that are capable of
leveraging the data generated over the analysis and evaluation of specific design cases.

In the short run, the architecture design also allows specialised and parallel development of
the platform’s data management approach, its ecological models, its geometric computation
services, and user tools.

6.3 Technical requirements for building the ECOLOPES platform

To develop a platform architecture for the ECOLOPES data-driven design recommendation
system, first the technical requirements from the stakeholders as well as the user of the
platform need to be well understood and defined (Ecologists represent the non-human
stakeholders). Only a common approach fosters a better understanding between the

 D3.1

 Page 42

interdisciplinary development groups and helps to define the setup and features that the
design platform needs to include. Table 4 shows some examples for user requirements from
the stakeholders that were translated into technical requirements.

Table 4: Example of user requirements from ecologists and architects for the ECOLOPES design platform.

User requirements (UR) Technical requirements (TR) Priority rating based on

MoSCoW framework

M-Must/ S-Should/

C-Could/ W-Won't have

UR1: As an ecologist, I want to measure the
biodiversity (=abundance of FG) for an
ecolope.

TR1: Algorithm and UI to calculate and display
count for all species/ FG, output as number,
or Shannon Index.

M

UR2: As an ecologist, I want to
choose/customise the ecological objectives
of the ecolope, e.g. target specific functional
groups (FG).

TR2: Enable an
animal/plant/microbiota/soil/human/abiotic
- aided design.
TR3: User-driven selection of FG, parameters
(Also requires a UI).

M

UR3: As an ecologist, I want to choose the
best management options to reach the
ecological objective for the ecolope.

TR4: UI to choose management options from,
e.g. mowing pattern, to simulate different
scenarios.

M

UR4: As an architect, I want to choose which
information (e.g. soil structure, surface
materials, microbiota, plant species, animal
habitats, biodiversity, endangered species,
climatic conditions, degree of
environmental pollution, land-use, building
regulations and laws, nature protection) the
digital terrain model should contain.

TR5: Combine digital elevation model (DEM)
of the envelope design (geometry) with the
metadata stored in the voxel model.
TR6: Method for visualising different analysis
outcomes, e.g. endangered species
(Also requires UI).

M

UR5: As an architect, I want to see design
iterations in real-time with the KPI values of
each design iteration.

TR7: Evolutionary computation in real-time
will depend on the processing capacity of the
cloud-based platform. UI for showing the KPIs
and analysis results.

S

UR6: As an architect, I would like to select
KPIs for each of the stakeholders

TR8: KPIs need to be predefined. UI to query
from the database the KPIs wanted for an
envelope design.

M

UR7: As an architect, I would like to visualise
the impacts of geometrical manipulation on
the KPIs per stakeholder.

TR9: Recompute KPI values as feedback for
the EIM Ontology and EIM.

S

6.4 Conclusions

By the number of partners and disciplines involved in the ECOLOPES project, diverse datasets,
and processes are involved that will have to be first considered, and then integrated into the
platform. Thus, the system architecture will have to offer a flexible and scalable solution in
order to guarantee a well-adapted service. However, the creation of highly complex modelling
approaches such as the ECOLOPES data-driven recommendation system include a proper

 D3.1

 Page 43

exploration and experimentation process which involves the development of preliminary
algorithms and combinations of modelling methods for which test datasets and a common
shared ‘playground’ is required. The ECOLOPES sandbox is a preliminary version of the
ECOLOPES platform with a more simplified system architecture, which will be described in
Section 7.

7. THE SANDBOX – A CLOUD-BASED PLATFORM FOR ECOLOPES

The implementation of the ECOLOPES platform architecture started by deploying its digital
infrastructure in the cloud to create an environment where prototypical components can be
deployed, evaluated, interconnected, and refined collaboratively. This digital infrastructure is
called the ECOLOPES sandbox, and provides the necessary computational capacity and
resources to execute different types of components, and it is organised according to the
system architecture design (Section 6). It implements its three components (data warehouse,
geometric computation environment, and ecological simulation environment) prototypically,
in a manner that satisfies the minimum technical requirements. At this stage of development,
the ECOLOPES sandbox acts as since September 2021 as a fully functioning cloud-based testing
environment, a backend, where services and components can be integrated (Task 3.3,
Backend development and integration). It can be accessed by interdisciplinary algorithm
developers within the consortium, students, and testers.

7.1 The sandbox – the 1st prototype of the computational
platform

The sandbox is the 1st prototype of the ECOLOPES computational platform (SO1) in the
ECOLOPES project. The system architecture of the ECOLOPES sandbox is rather a simplified
version of the ECOLOPES platform, but it outlines how its three main services are connected
(Figure 17): 1) Data storage, 2) computation, and 3) algorithm production (in Grasshopper). It
is developed and maintained by MCNEEL and fully operating from September 2021.

 D3.1

 Page 44

Figure 17: The three main services of the ECOLOPES sandbox.

7.2.1 Data storage

The data storage server is a Linux cloud server which can be accessed through NextCloud, a
free file sharing and collaboration platform. The server enables file storage and the live
exchange of analysed data in a cloud service. The Linux server is a preliminary version of the
ECOLOPES data warehousing infrastructure with an existing cloud infrastructure for storing
information, especially in relation to WP4, including the ECOLOPES database that includes all
data, including spatial-temporal, voxel and 3D models (Task 3.2). The data storage can be
accessed through NextCloud: https://data.mcneelresearchprojects.com/ (Figure 18). MCNEEL
provided training and documentation for all technical partners on how to use the ECOLOPES
data storage for testing and storing datasets (WP4) as well as 3D geometry (WP5).

Figure 18: The cloud infrastructure for the ECOLOPES data storage.

https://data.mcneelresearchprojects.com/

 D3.1

 Page 45

Furthermore, the purpose of the NextCloud data storage is:

● Upload and share datasets from individual stakeholders in the cloud
● Upload sample datasets for individual models
● Create an algorithm library for developing the ECOLOPES Algorithms -, computational

simulation environment -, and front-end tools components. Upload algorithms for
calculation of data processing (GH definitions)

● Save analysis and simulation results, make them available to stakeholders

Furthermore, an SQL database (MariaDB) is hosted in parallel to the NextCloud data storage
(Figure 19). This SQL database can be accessed by software components of WP4 implemented
in R (D5.1, Figure 17) as well as WP5 software components implemented in Python and
integrated with Rhino through the Hops interface (D5.1, section 2.4.3).

Figure 19: The SQL database is integrated.

7.2.2 Rhino.Compute server

Rhino and Rhino.Compute were chosen as a framework for the development of the ECOLOPES
platform (Section 2.4.2). In September 2021, a Rhino.Compute server for ECOLOPES was
deployed by MCNEEL (Figure 20). Technically, it is a Windows cloud server where Windows
Server 2019 runs on a virtual machine. It provides a user interface for communication with
local machines through the Grasshopper Hops components (Section 2.4.3), and through the
Rhino.Compute AppServer (Section 2.4.2) that displays the computed geometry and data in a
standard web browser. Another advantage of cloud computing with Rhino.Compute is that
computationally heavy analysis and simulation models (WP5 and WP6) can be processed.
Guidelines on how to connect to the ECOLOPES Rhino.Compute server for processing
Grasshopper algorithms were documented and communicated to all technical partners. The
server can be accessed through the following link: compute.mcneelresearchprojects.com.

 D3.1

 Page 46

Figure 20: The ECOLOPES Rhino.Compute server, a framework for the development of the design generation
and optimisation environment (Section 3.5).

7.2.3 The algorithm production server

The Heroku server stores Grasshopper algorithms to be computed by Rhino.Compute and the
Rhino.Compute.AppServer servers. Thus, WP3–WP7 can upload their custom algorithms to
Heroku. This Algorithm production server is a dynamic library for all scripts related to 3D
geometry objects based on the Rhino platform (Figure 21).

Figure 21: The Heroku server makes GH algorithms or Hops components available on your desktop/ they are
computed remotely.

7.2 Technical details on the sandbox setup

The Sandbox is hosted on a company-owned cloud server infrastructure by a private web
hosting company in Frankfurt am Main (https://webhoster.de/webhosting/). In contrast to

 D3.1

 Page 47

AWS, all servers are located in Germany and technical support is provided by a small-size
trained team. The sandbox can be scaled and adapted to the storage and processing
requirements in the ECOLOPES project. Table 5 provides an overview of the setup. Besides the
technical details, it includes the financial implications for the development of a new design
platform.

Table 5: The Sandbox setup.

Component Description Set-up Costs in EUR (since

September 2021)

1. Data storage server Linux server with NextCloud for all
partners.

Storage: 400 GB

28,75/ month

2. Rhino.Compute
server

Windows Cloud Server.
Windows Server 2019 license.

CPU: 4 cores (64-bit)
Storage: 400 GB
RAM: 16 GB

56,35/ month
1195,00 (once)

3. The algorithm
production server

Heroku server. - US 14,00/ month

Domain The domain is automatically
connected to the server.

- 15,00/ year

7.3 Testing of the sandbox: ECOLOPES plugin for Grasshopper

The ECOLOPES front-end tool is a free Grasshopper plugin developed by SAAD, UNIGE, VIE,
TEC, and led by MCNEEL (Task 3.4, Frontend development). Its aim is to generate, analyse and
optimise geometry models of envelope designs to gain knowledge about the ecological
performance of the design outcome and its impact on the city. Thus, the plugin contains
Grasshopper components for form generation from algorithms that will be developed by WP5
and WP6, and for environmental and ecological analysis developed by WP3-WP7. Further, the
plugin will include new Grasshopper components that bridge the gap between raster and
geometry data, such as the ‘Voxeliser’ and the ‘Rasteriser´ (developed by WP3) (Figure 22).
Lastly, the Expert database and the KB, hosted on the Linux cloud storage setup, can be
accessed by specific Grasshopper components developed by MCNEEL. Also, geometry and
analysis data can be stored and sent back to the KB.

There are four groups of Grasshopper components for the plugin: 1) Components for data
exchange, 2) components for form generation, 3) components for analysis including ecological
analysis, solar radiation, soil depth, water retention and connectivity as well as components
that can voxelize geometry models and export it as raster data, 4) components for KPI
simulation (filtering, ranking, correlations) and optimisation, and 5) preview components that
visualise data for each inhabitant and display the final ecolope design.

Grasshopper components are written in the C# or Iron.Python language. These components
and other algorithms can be compiled as Hops components which allow interfacing with the

 D3.1

 Page 48

implemented Rhino.Compute platform. Using Hops allows outsourcing resource-intensive
processes which are driven from your local machine.

Figure 22: Example how the ECOLOPES plugin for Grasshopper could look like.

8. CONCLUSIONS AND RECOMMENDATIONS FOR THE NEXT

VERSION

This report has described the technical requirements associated with the ECOLOPES platform
development and deployment. It has showcased the state-of-the-art of similar platforms with
related applications and discussed their capabilities with respect to comparable
functionalities.

It has also described the design of the computational workflow that specifies how different
components of the platform are chained, and how data needs to be managed to support the
processes inherent in the ECOLOPES approach.

It discussed how the ecological models are integrated to create the platform’s knowledge
generation framework, which enables the collection and exploitation of fundamental data
pertaining to the relationship between architecture and ecology.

Based on the design of the computational framework and the knowledge generation
framework, the requirements in terms of data exchange and interfacing mechanisms were
elicited and documented. In addition, the overall architecture model was defined to support
a scalable and flexible system capable of supporting the research activities conducted by
experts as well as the resolution of use cases brought forward by architects and designers.

 D3.1

 Page 49

The architecture was prototypically implemented under the Sandbox, which deployed all the
necessary digital infrastructure required, and provided an environment that facilitates the
deployment, testing, and evaluation of computational and analytical components.

In summary, the major achievements in terms of eliciting the requirements of the ECOLOPES
platform and prototyping it can be described in the following: Eliciting the requirements of
the digital infrastructure and system architecture, and deploying a fully functional production-
level infrastructure on top of which the platform can be easily installed. Designing the data
pipeline across the different components of the platform, including input/output interfaces
and data exchange mechanisms. Consequently, a data management layer that supports data
storage, service, and exchange was implemented. In addition, progress was achieved on
ecological model integration, through the MiMo experiment.

In the coming phase, the development and deployment of the ECOLOPES platform will build
on top of the technical requirements, technical designs, digital infrastructure, and functional
prototypes developed so far in the project, in order to deploy a first complete version of the
platform, which connects its components more systematically end-to-end.

In the short run, the integration of the ecological models and their functional deployment and
connection with the data management components of the architecture will be realised. This
will be accompanied by the creation of a first elaborate version of the ECOLOPES data model
that governs how data is exchanged between ecological and geometrical components. In
parallel, we will aim for a first stable deployment of analytical algorithms and programs that
support the design, analysis and evaluation of envelopes, on top of the Sandbox environment.
This will support the execution of the ECOLOPES design, analysis, and optimisation processes
end-to-end.

 D3.1

 Page 50

References

Research Paper:

Duering, S., Chronis, A., & Koenig, R. (2020). Optimizing urban systems: integrated
optimization of spatial configurations. In Proceedings of the 11th Annual Symposium on
Simulation for Architecture and Urban Design (SimAUD '20). Society for Computer Simulation
International, San Diego, CA, USA, Article 74, 1–7.
https://dl.acm.org/doi/10.5555/3465085.3465159.

El Jazouli, A., Barakat, A., Ghafiri, A., El Moutaki, S., Ettaqy, A., & Khellouk, R. (2017). Soil
erosion modeled with USLE, GIS, and remote sensing: a case study of Ikkour watershed in
Middle Atlas (Morocco). Geoscience Letters, 4(1). https://doi.org/10.1186/s40562-017-0091-
6

Foltête, J. C., Clauzel, C., Vuidel, G., & Tournant, P. (2012). Integrating graph-based
connectivity metrics into species distribution models. Landscape Ecology, 27(4), 557–569.
https://doi.org/10.1007/s10980-012-9709-4.

Hurkxkens, I., & Bernhard, M. (2019). Computational terrain modeling with distance functions
for large scale landscape design. Journal of Digital Landscape Architecture, 2019(4), 222–230.
https://doi.org/10.14627/537663024.

Hurkxkens, I., & Munkel, G. (2014). Speculative Precision: Combining Haptic Terrain Modelling
with Real-Time Digital Analysis for Landscape Design. Peer Reviewed Proceedings of Digital
Landscape Architecture 2014 at ETH Zurich, (November), 399–405.

Jakubínský, J., Herber, V., & Cudlín, P. (2019). A comparison of four approaches to river
landscape delineation: The case of small watercourses in the Czech Republic. Moravian
Geographical Reports, 27(4), 229–240. https://doi.org/10.2478/mgr-2019-0018.

Moore, I. D., Grayson, R. B., & Ladson, A. R. (1991). Digital terrain modelling: A review of
hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1), 3–
30. https://doi.org/10.1002/hyp.3360050103.

Seah, I., Masoud, F., Dias, F., Barve, A., Ojha, M., & Mazereeuw, M. (2021). Flux.Land: A data-
driven toolkit for urban flood adaptation. Journal of Digital Landscape Architecture, 2021(6),
381–392. https://doi.org/10.14627/537705034.

Sun, H., Lee, J., Chen, X., & Zhuang, J. (2020). Estimating soil water retention for wide ranges
of pressure head and bulk density based on a fractional bulk density concept. Scientific
Reports, 10(1). https://doi.org/10.1038/s41598-020-73890-8.

Technologies:

CityPLAIN (2021). A cloud computing tool for urban planning. [Online]. Available:
https://www.cityplain.com/. [Accessed: 2-March-2022].

Flux.Broward.Land (2021). Planning for uncertainty preparedness, mitigation & resilience.
[Online]. Available: https://broward.flux.land/. [Accessed: 23-March-2022].

 D3.1

 Page 51

InFraReD (2021). Intelligent Framework for Resilient Design. [Online]. Available:
http://infrared.city/. [Accessed: 23-March-2022].

InFraReD Tutorial (2021) [Online]. Available:
https://www.youtube.com/watch?v=DTiITFXPHOk&feature=emb_logo. [Accessed: 4-March-
2022].

KPF UI (2022). KPF urban interface for urban data analytics for informed decision making in
the design of buildings and cities. [Online]. Available: https://ui.kpf.com/. [Accessed: 21-
March-2022].

Scout.Build (2021). Spatial and temporal urban data analytics for informed decision making in
the design of buildings and cities by KPF. [Online]. Available: https://scout.build. [Accessed:
23-March-2022].

Scout.build example (2021). [Online]. Available:
https://scout.kpfui.dev/?project=hangzhouhttps://scout.kpfui.dev/?project=hangzhou.
[Accessed: 23-March-2022].

Swarm (2021). [Online]. Available: https://swarm.thorntontomasetti.com/. [Accessed: 23-
March-2022].

Software libraries and tools:

DeCodingSpaces Toolbox (2017). Computational analysis and generation of street network,
plots and buildings. [Online]. Available: https://toolbox.decodingspaces.net/. [Accessed: 20-
March-2022].

Docofossor (2019). A terrain modeling plugin for Rhino and Grasshopper. [Online]. Available:
https://www.food4rhino.com/en/app/docofossor). [Accessed: 18-March-2022].

Grasshopper by David Rutten (2008). [Online]. Available: https://www.grasshopper3d.com/.
[Accessed: 23-March-2022].

Grasshopper component (2018). [Online]. Available:
https://developer.rhino3d.com/guides/grasshopper/what-is-a-grasshopper-component/.
[Accessed: 17-February-2022].

GitHub Rhino.Compute McNeel (2021). REST geometry server based on RhinoCommon and
Grasshopper [Online]. Available: https://github.com/mcneel/compute.rhino3d. [Accessed:
10-March-2022].

GitHub Rhino.Inside (2021). [Online]. Available: https://github.com/mcneel/rhino.inside.
[Accessed: 14-February-2022].

Hops component McNeel (2021). [Online]. Available:
https://developer.rhino3d.com/guides/compute/hops-component/. [Accessed: 5-March-
2022].

Iron Python (2009). [Online]. Available: https://ironpython.net/. [Accessed: 21-March-2022].

Ladybug Tools (2013). Free environmental design knowledge and tools. [Online]. Available:
https://www.ladybug.tools/. [Accessed: 23-March-2022].

 D3.1

 Page 52

OpenFOAM (2004). A free and open source CFD software developed primarily by OpenCFD
Ltd. [Online]. Available: https://www.openfoam.com/. [Accessed: 2-March-2022].

Rhino 7 McNeel (2021). [Online]. Available: https://www.rhino3d.com/7/new/. [Accessed: 12-
February-2022].

Rhino.Compute Guides McNeel (2021). [Online]. Available:
https://developer.rhino3d.com/guides/#compute. [Accessed: 1-March-2022].

Rhino.Compute AppServer (2021). A node.js server acting as a bridge between client apps and
private compute.rhino3d servers. [Online]. Available:
https://github.com/mcneel/compute.rhino3d.appserver. [Accessed: 19-March-2022].

RhinoCommon, 2018 https://developer.rhino3d.com/guides/rhinocommon/what-is-
rhinocommon/. [Accessed: 22-March-2022].

Rhino Development (2018). Rhino and Grasshopper Developer Documentation. [Online].
Available: https://developer.rhino3d.com/. [Accessed: 5-February-2022].

Rhino.Inside McNeel (2021). Rhino and Grasshopper inside 64 bit applications for Windows.
[Online]. Available: https://www.rhino3d.com/features/rhino-inside/. [Accessed: 14-March-
2022].

Rhino.Inside.Revit McNeel (2021). Rhino and Grasshopper inside Revit. [Online]. Available:
https://www.rhino3d.com/inside/revit/beta/. [Accessed: 11-March-2022].

Rhino SDK (2018). The Rhino C/C++ Software Development Kit. [Online]. Available:
https://developer.rhino3d.com/guides/cpp/what-is-the-cpp-sdk/. [Accessed: 14-January-
2022].

Rhino.Python (2018). [Online]. Available:
https://developer.rhino3d.com/guides/rhinopython/what-is-rhinopython/. [Accessed: 5-
March-2022].

Wallacei (2020). An Evolutionary Multi-Objective Optimisation and Analytic Engine for
Grasshopper. [Online]. Available: https://www.wallacei.com/. [Accessed: 23-March-2022].

Appendix

A: ECOLOPES - Component_ Data Specification - All partners.xlsx

