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EXECUTIVE SUMMARY 

This report addresses the overall technical requirements associated with the implementation 
of the envisioned ECOLOPES platform, which aims to provide innovative support for the 
design, valuation, and optimisation of ecological envelopes.  

First, the state-of-the-art of computational platforms that address similar or related design 
challenges is reviewed by introducing and describing different exemplary platforms, including 
the Rhino framework on top of which major parts of the ECOLOPES platform are to be built 
and deployed (Section 2). 

The report presents the design exercises conducted, primarily in WP3, to design the ECOLOPES 
platform and elicit the technical requirements associated with its implementation.  

Then, the report discusses the design of the platform’s computational framework (Section 3), 
which defines the software components and environments that together implement the 
ECOLOPES computational flow, generating, evaluating, and optimising designs. Based on the 
design of the computational framework, the technical requirements pertaining to the system 
architecture design and deployment are elicited. 

Afterwards, the report describes the knowledge framework including the design and 
implementation of the MiMo experiment that concentrates on developing and integrating the 
ecological models and describing the data management and orchestration associated with 
their execution (Section 4). This discerns the specific requirements associated with running 
the models en-masse in a manner that generates meaningful design-related knowledge.  

Based on these collaborative design exercises and the complementary information collection 
activities conducted in WP3, the data specifications related to the platform’s major 
components as well as the overall design of the platform’s system architecture are described 
and documented (Section 5). 

Lastly, Section 6 of the report introduces the 1st prototype of the ECOLOPES computational 
platform – the ECOLOPES Sandbox. The section discusses the infrastructure deployed for 
supporting the development and integration of the ECOLOPES platform, which was 
conceptualised, developed, and deployed to provide an environment for data sharing, and 
testing computational programs and algorithms with project-related datasets. Furthermore, 
an example demonstrates how the frontend of the computational platform can be 
implemented as a Grasshopper plugin.  

The report concludes by drawing plans for the next stage of the development and integration 
of the ECOLOPES platform.  
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ABBREVIATIONS AND ACRONYMS 

AEC Architecture, engineering and construction industry 

AFG Animal functional groups 

AI Artificial intelligence 

API Application programming interface 

AR Augmented reality 

CAD Computer-aided design 

CFD Computational fluid dynamics 

Computational 
Workflow 

The overall process, implemented in the ECOLOPES platform, and 
composed of chained software components that together resolve 
ECOLOPES design cases.  

DEM Digital elevation model 

ECOLOPES Ecological building envelopes 

ECOLOPES Platform A set of interoperable tools and software components that together 
support the ECOLOPES approach for the design of envelopes.  

FG Functional groups 

GH Grasshopper, a visual programming interface for Rhino 

InFraReD Intelligent framework for resilient design 

KB Knowledge base 

KPI Key performance indicators 

MADM Multi-attribute decision-making 

MiMo Mini Model 

ML Machine learning 

MOO Multi-objective optimisation 

.NET The .NET Framework is a software framework developed by 
Microsoft that runs primarily on Microsoft Windows.  

NURBS Non-uniform rational basis splines 

OpenFOAM A free open-source CFD software developed primarily by 
OpenCFD Ltd 

PFG Plant functional groups 

Rhino Rhinoceros, a 3D free-form NURBS modelling software and cross-
platform open developer platform 
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Sandbox Sandbox is a cloud-based playground for testing software 
components in an agile process. 

SDK Software development kit 

SO Specific objectives in the ECOLOPES project 

SQL Structured query language 

UI User interface 

URL Uniform resource locator 

USLE Universal soil loss equation 

VR Virtual reality 

WP Work package 
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1. INTRODUCTION 

The ECOLOPES research project envisions a radically new integrated ecosystem approach to 
architecture, including the development of a new technology to achieve this vision. The new 
technology aims at enabling a design system for ECOLOPES – a new building envelope that 
includes the requirements of multi-species inhabitants. Such a holistic approach to species will 
allow plants, microbiota, animals, and humans to co-evolve within future cities (D4.1). 
However, the main challenge for the development of a joint technology is a common 
understanding between the multidisciplinary experts involved, mainly between architecture 
and ecology.  

This includes the exchange of knowledge concerning methods, workflows, datasets, sub-
techniques, data exchange formats, with the goal to further implement the key aspects of the 
ECOLOPES technology: 

1. to make ecological knowledge available for architectural design; and  
2. to develop a simulation environment that generates architectural design outcomes 

that enable synergies and, thus, limit conflicts between the multi-species inhabitants 
(Multi-species design optimization within the CAD environment).  

The D3.1 report reflects on the complexity of such an undertaking and focuses on the 
individual steps towards the ECOLOPES technology. It describes the progress achieved in the 
conceptualization, design, and implementation of the ECOLOPES Platform, which will convey 
the ECOLOPES approach and associated computational and analytical processes to the 
designers and architects targeted as users.  

In particular, the report details the high-level technical requirements of the ECOLOPES 
Platform, including the workflow that needs to be implemented, data specifications for 
different components, system architecture and enabling infrastructure and middleware 
components, backend integration, and the functionalities of the envisioned tools.  

During the first phase of the project, and in order to design the ECOLOPES system architecture 
and define its constituent components, a benchmarking of related digital technologies and 
design frameworks was conducted, focusing on cloud-enabled systems and urban design 
applications that support functionalities similar to those contemplated in ECOLOPES. A 
selection of these applications and technologies is presented in section 2, state-of-the-art of 
relevant applications, focusing on selected platforms and technologies that enable a more 
analytical, data-driven, and holistic approach to urban design and urban planning, 
encapsulating some of the concepts and processes of ECOLOPES.  

The overall process implemented and supported by the ECOLOPES Platform is referred to as 
the computational workflow, and its design is crucial for defining its architecture. A 
consolidated design of the computational workflow was achieved, as a fruit of collaborative 
work between all technical partners involved. It encapsulates the overall technical 
requirements of the ECOLOPES platform and shows how the different computational 
components are connected and how data passes through the system. The current design of 
the computational workflow that ought to be supported by the ECOLOPES platform is 
presented in section 3. 
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In order to analyse the technical requirements of the ecological model and to establish the 
data management processes associated with the generation of basic knowledge for the 
ECOLOPES platform, the MiMo experiment is introduced and discussed in section 4. It 
showcases how the different elemental ecological models are integrated into a composite 
ecological model, which can be executed to create datasets pertaining to the generation of 
knowledge.  

Based on the outcomes of the collaborative design exercises conducted to conceptualise and 
describe the computational workflow and the MiMo experiment, the preliminary data 
specifications that define the input/output format and requirements for all components are 
elicited. These specifications are described in section 5, including aspects pertaining to all 
major components of the ECOLOPES platform.  

The technical requirements from a system architecture standpoint describe the necessary 
infrastructure for the ECOLOPES platform and its components, as well as its integration and 
deployment models. The technical requirements specify how to support data management, 
backend functions, and user processes. This overall system architecture is described in section 
6, reflecting on the selected architecture model’s advantages and capabilities.   

Based on the conceptual design of the system architecture, a digital infrastructure and a 
development and deployment environment has been created and deployed in order to 
support the activities related to the functional bottom-up building of the ECOLOPES’ service 
architecture, in particular enabling the deployment of advanced computational algorithms for 
design generation, analysis, optimisation and evaluation. This architecture is called the 
Sandbox, and is a prototypical version of the ECOLOPES platform. It is a cloud-based 
environment where agile processes can already be deployed and tested. It uses cloud-based 
computing, data storage, and data sharing options with the goal to provide a joint 
environment for all collaborators. The ECOLOPES Sandbox is described in section 7.   

Concerning the research methods related to the elicitation of these technical designs and 
technical requirements, in the first year of the project mainly quantitative strategies (data 
specification questionnaires, interdisciplinary workflow discussions) were applied. However, 
lately, empirical methods as part of an experimental exploration process have become more 
relevant for the development of the first prototype of the ECOLOPES platform. A particular 
example is the MiMo experiment, a computational experiment that aims at building up 
knowledge about the relationships between architectural and ecological aspects (Section 4).  

Our preliminary results are a first version of the computational workflow, data specification 
for all computational components, the design of the MiMo experiment and expected 
outcome including the definition of obstacles, successful implementation of a cloud-based 
infrastructure through the Sandbox, and finally, the definition of the technical requirements 
for the ECOLOPES front-end tools. 

The knowledge acquired during the conduction of the activities described, and the overall 
technical specification and planning drafted, will enable and support the agile integration and 
deployment of the first version of the ECOLOPES platform in the coming project period. The 
technical foundations achieved so far constitute a clear roadmap for the integration of the 
different components developed in the project work packages, and demonstrate the technical 
viability of the envisioned ECOLOPES platform.   
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2. THE STATE-OF-THE-ART FOR DATA-DRIVEN URBAN PLANNING 

PLATFORMS 

One of the main challenges with respect to the ECOLOPES technology is to combine cross-
disciplinary expert datasets with 3D CAD models, and to enable a user interface to interact 
with the system. In urban design research and software development practice, similar 
challenges were encountered and addressed.  

As the digital transformation of design processes deepened, more data-driven and data-
intensive processes have been incorporated in general practice and consequently in the 
supporting software platforms. Advanced enabling technologies (e.g. sensing and 
sensorisation, AI-driven data modelling and simulation, machine learning and forecasting, 
etc.) that generate and leverage this data require higher computational power and a more 
decentralised approach to system architecture. Therefore, computational frameworks and 
software for architectural design have been migrating partially or completely to cloud-based 
scalable architectures. Urban planning and analysis software solutions are no exception.  

In this section, prominent and relevant examples of contemporary cloud-based urban design 
platforms are reviewed: Flux.Land – an open urban development platform (Section 2.1); 
CITYPLAIN, a cloud computing tool for urban planning (Section 2.2); and InFraReD – a platform 
for intelligent and resilient urban design based on Artificial Intelligence (Section 2.3). Finally, 
Section 2.4 offers a review of the Rhino.Compute platform with respect to its relevance for 
the development of the ECOLOPES design platform. In this context, it introduces another 
example of a web-based interface for urban analysis built on top of Rhino.Compute, the KPF 
Urban Interface. 

2.1 Flux.Broward.Land  – an open urban development platform 

Flux.Broward.Land, developed by the Urban Risk Lab at Massachusetts Institute of Technology 
and the Center for Landscape Research at the University of Toronto, is an interactive, web-
based, geospatial platform designed to increase awareness and bridge the gap between 
different stakeholders of urban development. It offers a data-driven, collaborative, web-based 
toolkit for urban planning and decision-making across the scales (Seah et al, 2021). The front-
end of Flux.Broward.Land can be accessed through a standard web browser 
(Flux.Broward.Land, 2021). Methods for the integration of data visualisation, data analytics, 
and data-driven design have been developed for the platform. Furthermore, a sectional tool 
correlates elevational information of streets, water bodies, and future sea-level rise impacts 
on groundwater tables (Figure 1). 
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Figure 1: Flux.Broward.Land’s user interface in a standard web browser (Flux.Broward.Land, 2021).  

In summary, the platform is a great example of a user-friendly application for cloud-based 
urban planning and analysis. The emphasis was clearly placed on the platform’s simple 
navigation and design aimed at stakeholders from varying degrees of expertise – from the 
general public to planners. However, there were major challenges with respect to hierarchical 
data clustering to elicit underlying similarities and differences within areas of interest beyond 
simple visualisation of datasets across administrative boundaries.  

Using contextual-specific data points and clusters generated on the platform, a practitioner 
can leverage an information database of the platform to make better design decisions. The 
integrated data-driven design methodology can be summarised in three key steps: (1) defining 
design priorities and goals, (2) quantifying evaluation metrics and design parameters, (3) 
design discovery, optimisation, and curation of design recommendations.  

Through the Flux.Broward.Land example, it becomes clear that  the development of a cloud-
based interactive platform comes along with many challenges such as data clustering, the 
establishment of an information database (knowledge base), and the visualisation of the 3D 
design and analysis outcome for stakeholders of diverse backgrounds. However, 
Flux.Broward.Land remains a design-recommendation tool based on analysis. In the next 
example, the focus is on a cloud-based platform that enables urban design and planning 
(Section 2.2).  

2.2 Cityplain – a cloud computing tool for urban planning  

Cityplain is a cloud-based platform for urban planning that addresses affordable housing 
within city extensions developed by Citythinking, an urban consultancy specialised in the 
management and design of integrated urban solutions based in Sevilla. Cityplain allows 
comprehensive scenario comparisons and cross-team collaborations to improve the design 
decision-making processes. As a nature-based and data-driven solution, it aims at making 
more sustainable design decisions for residential districts. The platform uses functional, 
environmental and socio-economic key performance indicators (KPIs). These are optimised in 
relation to the geometry of a design stage and also for Cityplain to learn from stage to stage 
design patterns to suggest more precise and efficient design solutions. Thus, they are 
integrated within an AI-based design recommendation system which is still under 



                                                                                                                   D3.1 

 

 Page 13   

development. Furthermore, the tool combines 3D geometry and numerical dataset from the 
analysis. As a web-based platform, it can be accessed by team members and stakeholders, 
allowing everyone to be part of the decision-making process (Cityplain, 2021) (Figure 2). 

 

Figure 2: The web interface of Cityplain (Cityplain, 2021).  

In summary, Cityplain is a web tool to inform stakeholders to make more efficient and 
sustainable design decisions for residential districts in urban areas. It provides analysis results 
from an evaluation process using KPIs and in the future version also by an AI-based ranking 
system of KPIs. However, the tool is limited in terms of accessibility. It is a commercial software 
solution and, thus, restricted to a limited user group. The high number of parameter inputs 
makes for a complex interface, and not all users might be familiar with defining parameters 
that require expert knowledge. Finally, the tool does not provide a convincing solution for 
designing urban building infrastructure considering terrain modelling. However, a GIS 
integration is foreseen for the next version. Currently, the design space is still on a plane 
without information about the elevation of the terrain, hydrological, geomorphological, and 
biological applications, which might be sufficient in the context of Cityplain, but such 
information would be relevant for a sustainable development of urban environments and 
buildings in ECOLOPES (Moore et al, 1991).  

2.3 InFraReD – a cloud computing tool for urban planning  

The Intelligent Framework for Resilient Design (InFraReD) was developed by many institutions 
including the Austrian Institute of Technology, the City Intelligence Lab, and the Bauhaus-
University Weimar (InFraReD, 2021). It is a platform for intelligent and resilient urban design 
based on Artificial Intelligence (AI). Machine learning (ML) models provide real-time feedback 
on the performance of custom designs and guide decisions at every step of the process. The 
performance is measured by Performance Indicators (Figure 3). InFraReD currently provides 
feedback on solar, sunlight and wind performance. Additional analysis methods will be 
included soon (Figure 4).  
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Figure 3: The web interface of InFraReD computes performance indicators for urban analysis (InFraReD tutorial, 
2021).  

 

Figure 4: The web interface of InFraReD computes the correlations between performance indicators (bottom, 
left) and applies the analysis results as a heatmap on the urban area (InFraReD tutorial, 2021).  

 

InFraReD fuses AI, Augmented Reality (AR), and computational design into one system. Thus, 
it is not only digital but also a physical and intellectual space for urban planners (Figure 5). 
Urban analysis inference models are trained by applications that are parts of the Rhino 
ecosystem, such as Grasshopper, Ladybug Tools (Ladybug Tools, 2013), and other custom-
developed tools by the InFraReD development team (Duering et al, 2020). This is then passed 
to OpenFOAM, a free open source CFD software developed primarily by OpenCFD Ltd, for 
generating the CFD results (OpenFOAM, 2004). 
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Figure 5: Augmented reality interface as part of the InFraReD technology (InFraReD tutorial, 2022).  

 

In conclusion, InFraReD is a cutting edge cloud technology for AI-based urban analysis in AEC. 
Besides an interactive web-based user interface, it also provides a physical AR interface for 
decision-makers. AI includes trained correlations between the most relevant performance 
indicators for urban planners such as wind, solar radiation and sunlight with the possibility to 
visualise analysis results in real-time for the user of the platform. 

2.4 Rhino as an open development platform and Rhino.Compute  

Rhino is a 3D free form modelling application developed by Robert McNeel & Associates, a 
privately-held, employee-owned software development company based in Seattle. 3rd party 
developers can extend Rhino’s functionality through freely available SDKs and there are more 
than 800 plugins available to date. Rhino has become increasingly popular in the AEC industry 
when Grasshopper, a visual algorithmic editor developed by David Rutten, became part of the 
software in 2008 (Grasshopper, 2008). Nowadays, there are more than 600,000 active Rhino 
licences and the user community in the McNeel forum has about 80,000 active users. Most 
stakeholders are from the AEC industry and industrial design, but also footwear, jewellery, 
and marine design are gaining in relevance. Rhino 7, the most significant Rhino version in the 
development history of McNeel was released at the beginning of 2021 (Rhino 7, 2022). Its 
success can be attributed to the inclusion of the new free-form modelling method based on 
SubDivision, but also due to its possibilities to run inside other 64-bit Windows applications 
(Rhino.Inside, 2021), e.g., the BIM modelling software Revit developed by Autodesk 
(Rhino.Inside.Revit, 2021), and ‘headless’ as a cloud computing service (Rhino.Compute 
Guides, 2021). Thus, Rhino 7 unlocked completely new modelling and development 
workflows. 
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The following sections introduce Rhino’s open development framework (Section 2.4.1), 
Rhino.Compute and the Rhino.Compute AppServer as a way to cloud-compute 3D geometry, 
and to visualise it through a web-interface (Section 2.4.2). Section 2.4.3 presents the 
capabilities of cloud-computing for parametric models using the Grasshopper Hops 
component, and finally, additional Rhino and Grasshopper applications that are crucial for 
enabling the computational workflow in ECOLOPES are discussed.  

2.4.1 Rhino as a cross-platform development framework for the ECOLOPES plugin 

The ECOLOPES platform interfaces with the user through the ECOLOPES front-end tools (Task 
3.4, frontend development), which will be developed as a plugin on top of Rhino. Rhino is an 
open development platform (Rhino Development, 2018). Thus, it provides a Software 
Development Kit (SDK) as well as guides that can be applied across platforms – Windows and 
OS X.  

Plugin development for Rhino for Windows: The Rhino SDK is a set of royalty-free developer 
resources for customising and extending Rhino for Windows. It provides documentation, 
tutorials and tools, as well as software libraries. The Rhino C/C++SDK consists primarily of C++ 
headers and libraries that can be used to build Rhino extensions called Plugins. Plugins are 
Windows DLLs that can be loaded into the Rhino process and interact directly with the Rhino 
application (Rhino SDK, 2018).  

Plugin development for Windows and for OS X: For the development of cross-platform Rhino 
plugins, Rhino provides a .NET SDK called RhinoCommon to create compiled code libraries. 
With this .NET SDK, a developer can create plugins for Rhino typically in C# or VB.NET. These 
plugins can be as simple as adding a new command to Rhino, all the way to extensive systems 
which introduce new UI elements and object types. Another SDK is included to create add-ons 
for Grasshopper, which help in developing custom component libraries. 

Grasshopper (GH) is a RhinoCommon (.NET) plugin for Rhino 7 for Windows and Mac. It was 
written using Microsoft Visual Studio Professional using both VB.NET and C# source compiled 
against the .NET Framework (Grasshopper component, 2018). 

Another possibility to develop cross-platform plugins is Rhino IronPython (Iron Python, 2009) 
which brings together the Python language and Microsoft’s .NET framework (Rhino.Python, 
2018). For Rhino plugin development, IronPython is used, for instance, to perform tasks in 
Rhino or Grasshopper, and to generate geometry using algorithms. 

With respect to the ECOLOPES plugin, it means, that custom algorithms can be written either 
as components for Grasshopper or a plugin for Rhino and these can be written in C#, C++, or 
Python language.  

2.4.2 Rhino.Compute and the Rhino.Compute AppServer   

Rhino.Compute is an open-source project. It uses the Rhino.InsideTM technology (GitHub 
Rhino.Inside, 2021), another open source project which allows Rhino and Grasshopper to run 
inside other 64-bit Windows applications. In Rhino.Compute, Rhino SDK functions are 
accessed via a cloud-based stateless REST API. Through Rhino.Compute developers can create 
applications that manipulate Rhino (3DM files), solve Grasshopper definitions and python 
scripts without needing to have Rhino installed on the client devices. Furthermore, it can call 
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over 2400 geometric operations from the RhinoCommon SDK remotely. With respect to the 
ECOLOPES platform, Rhino.Compute offers the possibility to calculate process-intensive 
Grasshopper algorithms for geometry generation and analysis within the cloud. Furthermore, 
it allows cross-disciplinary team members to have access to a ‘headless’ Rhino version and to 
work as a team simultaneously on the same project. Another advantage of Rhino.Compute is 
that Grasshopper definitions can run as a backend service. In this context, the Rhino.Compute 
AppServer is a node.js server acting as a bridge between client apps and private 
Rhino.Compute servers. The app is intended to host one or more custom grasshopper 
definitions and serve as the API that client applications can call to have definitions solved with 
modified input parameters (Rhino.Compute AppServer, 2021). Thus, the Rhino.Compute 
AppServer allows displaying parametric models in a web browser.  

Rhino.Compute and the Rhino.Compute AppServer have become relevant for the 
development of cloud-based design and analysis platforms in AEC. For instance, the 
international architecture and engineering practice, Kohn Pedersen Fox (KPF), developed 
together with other research institutions the KPF Urban Interface (KPF UI, 2022). It is an open 
interface that uses urban data analytics for an informed and more efficient decision-making 
process for building design and the planning of more sustainable cities. The KPF UI uses 
methods for real-time visualising urban data analysis, and displays the data in a way that it is 
understandable for users (Scout.Build, 2021). Furthermore, real-time analysis enables to 
match stakeholder assumptions with data analytics (Figure 6). Another relevant example in 
this context is Thornton Thomasetti’s Swarm app (Swarm, 2021) It uses Rhino.Compute and 
the AppServer to connect designers in design teams for the design exploration and decision-
making process in a web browser.  

 

 

Figure 6: Computational design model in KPF’s Scout web platform (Scout.build example, 2021). 

 

In summary, using the Rhino.Compute AppServer in ECOLOPES would enable a hardware and 
software independent visualisation of parametric models in a standard web browser. Also, 
non-expert users could easily interface with the ECOLOPES design platform through this 
application. Furthermore, the developed Grasshopper algorithms for geometry generation, 
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analysis and simulation could be used to run as a back-end service and results could be 
displayed in real-time on the web or on a local machine.  

2.4.3 The Grasshopper Hops component 

Hops is a Grasshopper component in Rhino 7 (Hops, 2021). It can compute Grasshopper 
definitions that are stored on a cloud or on a local server via file path or URL. Thus, it can call 
Grasshopper definitions from an online algorithm library and solve them locally. Such a 
process is not only useful to simplify complex algorithms, but also to share the same algorithm 
with team members, and referencing it across multiple projects. All Grasshopper plugins can 
run within a Hops function (Figure 7).  

 

 

Figure 7: The Grasshopper Hops component solves another Grasshopper function without having to open it 
(Hops, 2021). 

 

By default, Hops uses a local computer to solve Grasshopper functions. However, it is also 
possible to set up remote servers or virtual machines for Hops to call. Furthermore, Hops adds 
external functions to Grasshopper, e.g. other programming languages and functions. This way, 
Hops can call into CPython libraries including Numpy, SciPy, or TensorFlow. It can also work 
alongside Rhino.Inside.CPython to give full access to the Rhino Common API. 

In respect to the ECOLOPES platform, Hops is a useful component to cloud store and share the 
ECOLOPES algorithms developed by other work packages (WP). Further, Hops can interface 
with TensorFlow to introduce machine learning for training algorithms and models in 
ECOLOPES.  

2.4.4 Existing ECOLOPES-relevant Grasshopper plugins for urban design and analysis 

To get a better understanding of the variety of algorithms that can be developed within 
Grasshopper, the following section provides an overview and discussion about a pre-selection 
of additional plugins: 

Ladybug Tools for solar radiation analysis and for daylight optimisation: Ladybug Tools is a 
collection of free computer applications that support environmental design in Grasshopper 
(Ladybug Tools, 2013). It is built on top of validated simulation engines such as Radiance, 
EnergyPlus/ OpenStudio, Therm/ Window and OpenFOAM. Ladybug Tools is written in 
Python, which can be run on virtually any operating system and plugged into any geometry 
engine. The project is open-source so Ladybug Tools Grasshopper components can be edited 
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and rewritten. For ECOLOPES, Ladybug Tools could be an important tool to compute solar 
radiation (Section 4.4), and for computing human comfort (Section 3.5.2). 

Decoding Spaces for urban design and analysis: Decoding Spaces is a free computational 
analysis and design generation tool for street networks, plots, and buildings developed at the 
Bauhaus-University Weimar (DeCodingSpaces Toolbox, 2017). As a Grasshopper plugin, its 
algorithm library contains urban analysis methods for data analysis which can be combined 
with stakeholder requirements (KPIs) to make more efficient design decisions in ECOLOPES.  

Wallacei for evolutionary computation: Wallacei is a free evolutionary multi-objective 
optimisation and analytic engine for Grasshopper that allows evolutionary computation in 
design (Wallacei, 2020). As an open-source project, Wallacei can be extended. In ECOLOPES, 
Wallcei could play a crucial role, as it already provides evolutionary computation algorithms 
for generative design (WP5 and WP6).  

Docofossor for terrain modelling: Docofossor is a free parametric tool in Grasshopper to 
transform digital elevation models (DEM) by point, path, area, or surface. In contrast to 
surface models, DEM are required for water retention modelling, land-use studies, or other 
geological applications. The plugin is written in IronPython and can be extended. It was 
developed at the Building Technologies department at ETH Zurich (Hurkxkens & Bernhard, 
2019), (Docofossor, 2019). 

2.5 Conclusions 

The presented platforms, solutions, and technologies showcase the advances of real-time 
cloud computing, visualisation of results in open web interfaces, and the implementation of 
decision-support tools for urban design and urban analysis. They serve as a reference for the 
design and development of the ECOLOPES platform that aims to build on top of compatible 
frameworks and system architecture paradigms. Technically, the technical requirements 
fulfilled by these state-of-the-art platforms, in particular, their abilities to optimise highly 
demanding processes and to provide on-the-fly data analysis capabilities, are used as an initial 
reference to define the functional and non-functional requirements that ECOLOPES platform 
aims to support.  

The review in this section has demonstrated that Rhino’s open framework provides an 
extendable, and customisable environment for the development of such platforms, allowing 
developers to deploy expert programs as a service, and chain programs from different 
providers addressing distinct concerns of analysis, evaluation, simulation, and generation of 
design components. For this purpose, it will be exploited in the development and integration 
of the ECOLOPES platform.     

3. THE COMPUTATIONAL FRAMEWORK IN ECOLOPES 

WP3’s main responsibility is the creation of the ECOLOPES computational platform (SO1). In 
order to design the architecture of the ECOLOPES platform, the data and computational flows 
were examined in detail collectively with the developers of the different components and 
constituents. In this exercise, the technical and non-technical requirements were taken into 
account in order to fulfil the project’s technical objectives. In addition, a special focus was 
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dedicated to defining the data objects that are created, exchanged, and analysed in this 
workflow, including Raster data, tabular data, dynamic data, static/referential data, voxel 
models, CAD models, among others. The computational components developed in the other 
work-packages were initially addressed as ‘black boxes’ to emphasise their input/output 
requirements and their technical requirements in terms of middleware, computational 
resources, and other concerns.  

The results of this technical analysis applied to the envisioned workflow are encapsulated in 
the computational framework. It describes the data-driven components and processes of the 
ECOLOPES platform and provides a data governance framework and a high-level system 
architecture design that defines and delimits the role of technical components supporting the 
ECOLOPES design and analysis processes. It also explains how envelopes are technically 
composed, and the roles and contributions of different components. 

The computational framework essentially rearranges the assets of the ECOLOPES platform and 
consolidates them into five major modules, each responding to specific data and functional 
requirements. The modules are: the open and expert databases, the ecological model, the 
knowledge base, the ontology, and the design generation and optimisation environment 
(Figure 7).  
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Figure 7: The computational framework for the development of the ECOLOPES platform. 
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 From a workflow perspective, the system connects external data sources and also creates and 
hosts expert datasets, which are then used as referential data on aspects such as species, 
ecosystems, climates, geography, urbanism, and built environment. The ecological model 
simulates an ecology under specific conditions and can be run iteratively and continuously to 
identify correlations among conditional variables, in particular variables with geometric 
(design) significance. This generated elemental knowledge pertains to the system ontology, 
which identifies and describes design-relevant relations and different variables of the ecolope. 
The ontology builds such relations on top of this generated knowledge (in addition to other 
expert knowledge), and is consulted by the design, analysis, and simulation programs. These 
aforementioned components constitute the data and knowledge management part of the 
ECOLOPES platform. Together, they aim to capture, structure, generate, interrelate, and serve 
the fundamental data concerns that are exploited by the ECOLOPES services and tools in an 
ad-hoc manner.   

The following sections introduce the five individual modules of the computational framework 
in more detail and explain how they are interlinked.  

3.1 Open and expert databases 

Open databases are publicly available data sources on species, soil, abiotic concerns, built 
environment, available local 3D assets, and other concerns, which are pertinent to the 
composition of the expert databases and occasionally to the execution of the ecological 
models. In contrast, the expert database, it contains datasets that have been compiled from 
open sources and expert models to capture computationally-relevant concerns (e.g. species 
pools, KPIs, etc.), or to describe ECOLOPES-related concerns, such as human-nature 
interactions (Figure 8). The expert database is regularly queried by ecological models. 

While open databases are already available through 3rd-parties, the expert database can be 
implemented as an integral module of the ECOLOPES platform, using a data storage 
infrastructure deployed in the cloud in order to facilitate and govern data access and use. In 
all cases, this data is considered largely static from a design perspective and will be managed 
as such.   

        

Figure 8: The open and expert databases of the ECOLOPES platform. 
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3.2 Environmental models (WP3–WP7) 

Those models establish the connection between the architecture and the ecological model, 
providing necessary data (such as incoming radiation, soil depth). They are currently 
developed in the MiMo experiment and are further described in Section 4.4 of this deliverable. 

3.3 The Ecological Model (WP4) 

The ECOLOPES model is a composite spatial-explicit model that models the interdependent 
spatial and temporal dynamics of the soil, microbiota, plants, and animals, in response to the 
regional species pool, the geometry of the building, the local abiotic conditions, the substrate 
used to design the ecolope, and the management. The biological units of the model are plant 
(PFG) and animal (AFG) functional groups, i.e. groups of species sharing similar characteristics 
in the way they respond to and influence their environment. The model is based on a multi-
scalar approach. The regional ecological model determines which FGs of the species pool have 
a reasonable chance to colonise the ecolope according to its location in the city. The local 
ecological model applies a second filter on these species based on the abiotic and biotic 
conditions delivered by the ecolope.  

Essentially, the ecological model integrates all elemental models developed to address 
concerns related to ecology. These individual models are tightly integrated into a composite 
model because they are largely interdependent. Their interfaces also have been standardised 
by definition, so that  they support the same data model in terms of input and output. This 
composite model can be deployed on an independent server located at, and operated by 
TUM, as part of its computing cluster. It can interface with other components of the ECOLOPES 
platform through secure HTTP requests. In addition, stable versions of the model can be 
installed on a cloud server for more stable deployment. 

3.3 Knowledge Base (KB) 

The Knowledge Base (KB) is a data storage system used to store structured and unstructured 
data resulting from the execution of the Ecological Models and the selected KPIs. It is designed 
to support the discovery and valuation of correlations between different data variables, 
namely between architecture-related variables and ecologically-related variables. Its role is to 
cumulate and statistically analyse the output of the ecological models at each execution, 
including the resulting environmental and ecological characteristics of the modelled ecolope 
(e.g. radiation input, soil depth, water retention, composition and location of different plants 
and animal functional groups, etc.). The knowledge base can be queried to provide statistical 
correlations on-the-fly that befit particular criteria (e.g. location, design parameters, climate 
parameters, ecological conditions, etc.). The knowledge base will be primarily populated by 
the results of the MiMo experiment, which will aim to run simulations en-masse to cover 
variations along with general, generic, and popular variables.  

Technically, the knowledge base can be implemented as a cloud-based SQL database with a 
web-enabled interface, which allows other remote systems to execute queries and retrieve 
statistical results. It will implement the ECOLOPES Information Model (EIM) that defines the 
input-output parameters of the Ecological Models, which integrate all the computationally-
significant data fields related to architecture as well as ecology.  
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3.4 The EIM ontology (WP4) 

The EIM ontology is the reasoning framework for the ECOLOPES platform. It will leverage 
information from the KB and will capture existing patterns that have been proposed to define 
an annotation model that can be queried by other components of the computational 
framework. The design principles of the EIM ontology are described in Deliverable 4.1. The 
EIM Ontology will interface with expert data and the design generation and optimisation 
environment through an SQL database. For the EIM ontology, the Protégé framework is 
envisioned. This allows for flexibility in integrating the ontology with other databases in the 
system and developing interfacing capabilities for other ECOLOPES services to consult the 
Ontology and retrieve specific results.  

3.5 The design generation and optimisation environment  

The design generation and optimisation environment is a CAD environment built on top of 
Rhino / Rhino.Compute technologies (Section 2)(Figure 9). All algorithms for design 
generation, environmental and ecological analysis, and design optimisation are supported by 
the system and can be deployed as part of the ECOLOPES platform. Components that export 
data or save calculations on the platform’s data storage system will be hosted in the cloud (at 
least, their backend services) in order to support more efficient security and data transaction 
management. In the following section, the components of the design generation and 
optimisation are explained in more detail: (1) Architectural design; (2) analysis; and (3) 
optimisation. 

 

Figure 9: The design generation and optimisation environment. 

 

3.5.1 Architectural design components (WP5) 

The development of a generative algorithmic process for designing an Ecolope is conducted 
in WP5.  WP5 has three objectives: 1) development of a Voxel model that links the EIM 
Ontology from WP4 with the computational model (CAD model); 2) development and 
integration of a generative algorithmic process within the Rhino and Rhino.Compute 
framework implemented by McNeel; 3) validation of the algorithmic process that delivers the 
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basis for the work in WP6 and WP7. Objective 2 entails the generation of design variations, 
from which a selection will be optimised in WP6. The algorithms for 1) generating initial design 
variation and 2) filtering and ranking the outputs will be connected to the CAD model.  D5.1 
describes the development process of the ECOLOPES algorithm. This includes, 1) the 
identification of relevant data sets (terrain, maps, networks, volumes); 2) identification of an 
approach to a generative algorithmic design process; 3) identification of principal approaches 
to linking the algorithmic process to the ECOLOPES voxel model and EIM Ontology. The 
description of the key datasets relates to the first part of the algorithmic process up to the 
detailed design process. The Voxel model operates as an interface between different datasets 
that can incorporate expert information. The Voxel data will be written in an SQL database in 
different resolutions. 

 
3.5.2 Analysis components (WP3–WP7) 

The analysis components are a series of existing and new Grasshopper components which will 
become part of the ECOLOPES plugin (front-end tool). They contain simulation modules that 
address environmental analysis; as well as human comfort. However, the main simulation will 
be conducted by the Ecological Model which computes the spatial dynamics of multi-species 
for one specific design outcome.   

Human comfort simulation (Thermal Comfort) (WP6 and WP7): In order to evaluate thermal 
conditions and their impact both on the environment (in particular on buildings and their 
“living” components) Ladybug Tools and Morpho components will be used to run simulation 
models potentially comparable with the simulations that will be conducted in the validation 
process (WP7).  

Environmental Model simulation components (WP3–WP7): These new Grasshopper 
components developed by WP3-WP7 will compute the a) connectivity for animals to move 
around, b) soil placement, c) solar radiation, and d) water retention based on one envelope 
design. These models are more extensively detailed in the current deliverable, section 4.4. The 
analysis results will be visualised and results provided for optimising the design outcome.  

Ecological Model simulation component (WP3 and WP4): This new Grasshopper component 
allows running the Ecological model within Rhino’s CAD environment. It will return simulation 
results in respect to the ecosystem for various design solutions. It is worth noting that the 
encapsulation of these analytical components as Grasshopper programs (especially the 
Ecological Model) will help to optimise the platform during run time as service-oriented 
architecture, and instantiate and replicate the platform’s backend to scale or to respond to 
specific custom applications or use cases.  

3.5.3. Simulation and optimisation components (WP6) 

The optimisation process of ECOLOPES design outcomes is also a generative design process. 
Thus, it is similar to the design generation process in WP5, as it relies on evolutionary 
computation algorithms. For the optimization of the ECOLOPES design, there are the following 
three steps: 1) Design optimization setup; 2) results from analysis; and 3) filtering and ranking 
of outputs. 

1. Design optimisation setup: The simulation and optimisation components in WP6 will 
be an integrated workflow that utilises both multi-objective optimisation (MOO) 



                                                                                                                   D3.1 

 

 Page 26   

algorithms and multi-attribute decision-making (MADM) strategies. As such, the 
simulation will be the standard set-up dependent on the algorithm or Grasshopper 
component used, but weights will be established for the fitness objectives (Key 
performance indicators - KPIs), in relation to MADM strategies to establish hierarchy 
and priority. 

2. Results analysis: The results of the simulations will be analysed through the 
visualisations available by the selected optimisation algorithm or Grasshopper 
component but will also integrate an additional process of calculating KPIs through 
mathematical formulation using the numerical outputs of the Analysis models (Human 
Comfort Simulation, Environmental Models, and Ecological Model). The results of 
these calculations will contribute to the optimised fitness values. 

3. Filtering and ranking of outputs: The filtering process will be conducted through an 
algorithm that eliminates outputs that do not fit the initial fitness objective thresholds 
generated in the architectural design phase. The generated range of Pareto solutions 
(optimised solutions with more than one objective) will then be ranked using a 
selected MADM strategy using the weights that were established in the design 
optimisation setup. This algorithm will rank the generated outputs based on the 
weights of the fitness objectives (KPIs) to showcase the best performing designs in 
order. 

However, the optimisation process includes not only the optimisation of the envelope design, 
but also the voxel model and the KPIs for each iteration. The optimised values (data and KPIs) 
will be encoded into the respective voxel cells through the same algorithms employed in the 
architectural design phase which will then be exported as raster information, if running 
through an iterative loop, or .csv in the case of a final design selection. Thus, the final outcome 
of the computational workflow is a selection of envelope design with the corresponding 
metadata stored in a voxel model.   

3.3 Conclusions 

The computation framework based on Rhino establishes the core processes supported in the 
ECOLOPES platform, and provides a roadmap for the integration and deployment of the 
computational components developed in WP3, WP4, WP5 and WP6. From a system 
architecture perspective, the framework also identifies and defines the data connections and 
data exchange mechanisms required for integrating the ECOLOPES platform.  

In particular, this exercise identifies two main parts of the ECOLOPES platform with different 
technical requirements, working asynchronously to a large extent: 1) the data and knowledge 
management layer, and 2), the design, analysis, and simulation services.  

In the coming project period, the design and implementation of both parts can progress in 
parallel, with connections established through the ontology and the system’s data warehouse.  
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4. THE KNOWLEDGE GENERATION FRAMEWORK AND THE MIMO 

EXPERIMENT  

The acronym MiMo stands for MInimalist MOdel. The MiMo experiment was conceptualised 
to address the knowledge gap identified by the consortium on our ability to understand and 
predict how design can drive and can be used by the ontology to drive the development of the 
ecolope ecosystem. The set of ecological processes and causal relationships encapsulated in 
the ecological model is too complex to enable us to a priori predict the consequences of a 
change in design on all or part of the ecolope ecosystem without testing the design by running 
the full model. Such an approach is hardly compatible with the idea of the EIM ontology which 
aims to guide design toward given objectives. The MiMo experiment, therefore, aims to create 
the knowledge necessary to inform the design process to go toward given ecological and/or 
human comfort objectives. The MiMo experiment will address this objective by 1) enabling 
the initiation of architectural and ecological variables to be meaningfully correlated, and 2) 
serving as an open-ended accumulative knowledge generator for the ECOLOPES project. 

In computational terms, the MiMo experiment aims to agilise the consolidation, prototyping, 
and deployment of the data and knowledge management layer of the ECOLOPES platform, 
focusing primarily on integrating the elemental ecological model, streamlining their execution, 
and connecting them with the data warehouse to accumulate their results. The MiMo 
experiment will run the environmental and ecological models on a continuous and linear 
variation of input data to populate the project’s database and create the necessary data 
threshold to identify meaningful correlations between architectural or design variables and 
ecological variables.  

4.1 Goals of the MiMo experiment 

In its first version, the MiMo experiment will enable us to understand how given building 
geometries impact the environmental conditions (such as soil depth and water retention, 
radiation input, and general connectivity of the ecolope) and the structure and composition 
of the ecological communities on the ecolope. The objective is therefore to use the experiment 
to extract general relationships between architecture and ecology. These relationships will 
then be used as possible architectural options to guide design in the generative design and 
design optimisation processes of the computational workflow (see Section 3 of the present 
deliverable). 

So far, the knowledge directly linking architecture to ecology exists only in fragmented and 
specific ways. For instance, we might know from the literature review the needs in terms of 
food and shelter resources of a given bird species. Such knowledge gives hints to architects to 
create artificial nests of the right shape and height to potentially attract the target species. 
However, the artificial nest may actually enable an individual to live on the building only if a 
number of other conditions are met, i.e., if the environment provides the other factors 
necessary to the species to complete its life cycle, such as access to enough food, mates, and 
acceptable probability of death. The MiMo experiment will help to understand how the 
geometry of the building can help support given functional groups or types of ecosystems 
while accounting for all these important factors that interact with the species life cycle.  
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The MiMo experiment relies on the use of the different environmental and ecological models 
developed or applied in the computational workflow for the development of the platform (see 
section 3 of the present deliverable). It will simulate the environmental conditions and ecology 
of ECOLOPES designed with a high number of simulated building geometries. These simulated 
geometries will be built to cover the range of simple possible ECOLOPES geometries in a 
multiscalar approach, including variations going from the microscale (1 to 100 cm scale) to the 
macro-scale (general shape) of the building.  

We envision the MiMo experiment to be extended toward the exploration of other 
architectural questions, for instance to better understand how to change the geometry of a 
building to support given functional groups or ecosystems under various climatic conditions, 
or the role of management. 

4.2 General structure of the MiMo experiment 

The MiMo experiment is composed of two computational steps. The first step explores how 
geometry influences the abiotic conditions on the ecolope, using a set of environmental 
models for soil erosion, water retention, radiation, and connectivity (Figure 10). It will 
contribute to answer simple but important questions regarding the environmental conditions 
induced by given geometries (and which will then support the ecolope ecosystem) such as:  

● Can the geometry of the building maintain soil where we place it, or will the soil erode 
and accumulate in other places? 

● Does the geometry of the building enable water to be stored/retained in the soil in 
some areas, or does it directly flow down? 

● How does the geometry of the building modify the input radiations on the ecolope? 
● To what area (m²) does the geometry of the building allow access for a walking animal? 
● Which geometries enable to optimise part or all of these different aspects? 

The second step explores how the environmental conditions induced by the geometry can 
drive the development of the ecolope ecosystem and promote certain plant or animal 
functional groups and no others. The two steps together will enable us to build the necessary 
knowledge and hopefully generalities on the response of the ecosystem to the building 
geometry in different environmental contexts. 
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Figure 10: The computational workflow in the MiMo experiment. 

4.3 MiMo inputs 

The MiMo experiment requires a number of inputs in a given format for the involved models 
to run. Understanding the influence of some of these input variables identified as important 
by the consortium, e.g., variables describing the geometry of the building, on the ecological 
variables is the main objective of the experiment. These important input variables will be used 
as parameters to be varied and tested in the experiment.  

The experiment will allow collecting the environmental and ecological outputs of manifold 
combinations of parameter values. The combination of tested parameter values will be 
created to cover the range of possibilities of each chosen parameter, with respect to the 
values of the other parameters (some combinations might be unrealistic). Some interactions 
between parameters will also be targeted by the experiment. For instance, we will investigate 
the influence of the interactions between the different geometry parameters on the ecological 
variables (Section 4.3.1). This section details the first parameters that will be targeted by the 
experiment.  

From 3D CAD to raster data – geometry parameters: The variables describing the geometry 
of the building are the first ones targeted by the MiMo experiment. Geometry is expected to 
influence the environmental conditions on the ecolope (e.g., connectivity, radiation input), 
and therefore the species that can live on it. This section introduces a new method of how we 
envisioned correlating geometry and the corresponding metadata for a defined analysis grid. 
Thus, in MiMo, an initial range of geometry typologies (e.g. box, sphere, cylinder, cone, 
tetrahedron, etc.) were programmed within Rhino’s visual programming environment and 
divided into voxel units of two different sizes: 1 m × 1 m × 1 m, and 10 m × 10 m × 10 m (Figure 
11).  
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Figure 11: Grasshopper algorithms that generate different building typologies and ‘voxelise’ them into units. 

 

In the next step, an algorithm extracts relevant geometry parameters’ values, i.e., surface 
roughness, surface area, surface angle/steepness, and building massing. The Rhino 
environment then enables us to vary the geometry parameter values to cover their range of 
possibilities, and ultimately explore how their variations impact the ecology (Table 1). They 
are then stored within a database that can be exported as a .csv table or a set of rasters. The 
rasters are then used as input to the models (Section 4.4). 

 

 

 



                                                                                                                   D3.1 

 

 Page 31   

Table 1: Geometry parameters to characterise the voxel cell developed by WP5, WP6, and WP7. 

Geometry parameters  Description Range  Units 

1. Surface roughness Deviations of the 
normal vector of a real 
surface from its ideal 
form 

0 - 1 Average Roughness (Ra) 

2. Surface area Total area of a single 
surface 

  Area (m2) 

3. Surface angle/ steepness Angle between the 
surface normal and a 
reference plane 

0 - 180 Degree (°) 

4. Building massing General building shape, 
form, and size (height 
and planar dimensions) 

High rise - Medium 
Rise - Low Rise - 
Single Storey 

Volume (m3) 

 

4.4. MiMo models 

In the first computational step of the experiment, four MiMo environmental models compute 
the soil depth, water retention, solar radiation, and contribution to connectivity of each voxel 
cell based on given inputs. Building-scale values will be computed to evaluate the general 
impact of the geometry for each of these environmental conditions (Table 2). In the second 
step, the local ecological model will use the geometry and the environmental conditions 
generated in the first step to model the responses of soil development, plants, and animals to 
the geometry. 

Table 2: Environmental parameters computed by the four environmental models to characterise each voxel cell 
and the overall environmental performances of the geometry (developed by WP3– WP7).  

To compute Description Range  Units 

Soil depth per voxel cell (volume) Soil 
remaining/accumulate
d on a cell after erosion 

0-N/A Volume, mm3, cm3, m3 

Connectivity Modelling of 
connectivity network 
based on Graph theory 

0-1 Probability of connectivity 
(per voxel cell and for the 
entire ecolope) 

Solar radiation Solar radiation for a 
specific geometry 
(Shadows, heat) 

0-5,7 kWh/m2 
depending on the 
geographical 
location 

Global Solar Irradiation 
(kWh/m²) 
Incident radiation 

Water retention/Hydrological model Water fluxes and 
retention 

N/A Water Retention Value 
(WRV) 
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4.3.1 The soil depth model 

Soil is required for microbiota, plants, and is used as shelter by some animals. The soil depth 

model computes how much soil can be placed on and retained by a certain geometry. Spatially-
explicit soil erosion modelling, as enabled by the Universal Soil Loss Equation (USLE), usually 
requires information on run-off, slope, erodibility of the soil, vegetation, and practices (e.g. El 
Jazouli et al., 2017). A model derived from this equation, also simulating soil accumulation 
(see Jakubínský et al., 2019 for a model comparison), can easily be applied to the ECOLOPES 
framework after soil erodibility parameterization, a necessary step because on an ecolope the 
soil will most probably be an artificial substrate and not a natural soil. The model outputs the 
soil volumes for each voxel cell.  

The soil depth model will use a surface model as input. We will test how surface roughness 
values (Ra) and surface inclination influence the resulting distribution of soil depth over the 
ecolope. In the next step, voxel cells characteristics with the potential to retain soil are 
selected and the volume of the soil is calculated for each voxel cell (Figure 12 and 13). 

     

 

Figure 12: An approach to compute the surface roughness value Ra through a parametric model in 
Grasshopper. 

 

 

Figure 13: An approach to compute the angle of the surface inclination through a parametric model in 
Grasshopper. 
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4.3.2 The connectivity model 

The connectivity model proposes a very general approach for connectivity based on graph-
theory, where the ecological connectivity network is inferred using the least-cost path 
approach to connect habitat patches (Graphab: 
https://sourcesup.renater.fr/www/graphab/fr/home.htm) (Foltête et al., 2012). The 
connectivity will be computed for a walking animal, defining cells occupied by soil (from the 
soil depth model) as potential habitat/resource. The resistance of the 3D surface to 
movements of the animal will depend on the slope between voxel cells. The underlying 
assumption behind computing a general connectivity network based on a walking animal is 
that walking animals are the organisms that are more likely to be limited in their ability to 
move through the 3D surface by steep slopes. Thus, if a walking animal can reach an area, it’s 
very likely that most organisms can reach it.  

The connectivity model informs which voxel cells and path(s) can be used by the walking 
animal for reaching these areas. The outputs are: 

● A map giving the probability of connectivity of voxel cells occupied by soil (habitat 
patches) (PC, Saura et al., 2007) 

● A connectivity map based on the number of times a voxel cell is part of a path (corridor 
function) 

● A general probability of connectivity for the entire 3D surface that reflects the 
probability that two points are taken randomly in the area are connected 

● A 3D connectivity grid with the CAD environment 

4.3.3 The solar radiation model  

Besides soil, light is required for plant growth. Solar radiation model extracts light values based 
on the input geometry using the Ladybug Tool in Grasshopper. The workflow for the solar 
radiation simulations is mainly composed of three steps: 

Firstly, a location for the simulations has to be set up. Once the location is defined, an .epw 
file is needed to import climatic data: in this script, the open-source database used is directly 
connected with Ladybug Tools: https://www.ladybug.tools/epwmap/ (Figure 14). After 
importing the set of weather data, data concerning solar radiation are available for the 
simulation. 

At this stage, the second step is related to the definition of the envelope shape (coming from 
the GH script previously defined) and the ground (e.g. planar surface, slope, etc), on which the 
distribution of solar radiation will be analysed. Finally, the last step is related to the definition 
of the grid size, depending on the resolution that we want to achieve with simulations (e.g. 1 
× 1 m2 or 5 × 5 m2). Outputs of this workflow are specific values of incident radiation (kWh/m2) 
for each cell of the mesh composed by envelope and ground.  

https://www.ladybug.tools/epwmap/
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Figure 14: Solar radiation values computed for each voxel cell within the model. 

 

4.3.4 Water retention model 

The water retention model computes how much water can be retained by a certain 
geometrical configuration. As an input, it would need either a Digital elevation model (DEM, 
a 3D computer graphics representation of elevation data), NURBS, or a polygon mesh model. 
DEM is often required for flood or drainage modelling. Docofossor, a Grasshopper plugin 
(Section 2.4.4) uses DEMs as input for analysis (Sun et al, 2020). However, there are existing 
examples of how water retention models can also be simulated in Grasshopper using NURBS 
and mesh geometry.  

4.3.5 The local ecological model 

The ecological model is described in the current deliverable in section 3.2 and more 
extensively in the deliverable D4.1. In the MiMo experiment, the ecological model will likely 
be run over a 50 or 100 years’ period to simulate in a spatially-explicit way the state of the 
ecolope ecosystem in terms of soil types, plants and animal functional groups distribution. 
These spatially-explicit outputs will be used to understand how the fine-scale geometry 
influences the ecological characteristics of the voxel cells. The ecological outputs will also be 
used to compute building-scale ecological variables meaningful to reflect important ecological 
processes. For instance, the higher trophic level present on the ecolope could be used to 
reflect if and how the geometry influences the trophic structure of the ecological community. 

 

4.4 The Knowledge base (KB) 

The data produced by the MiMo experiment will fill up the knowledge database, where each 
line contains a unique combination of parameter values and the resulting environmental and 
ecological outputs. This knowledge base will be used to extract correlations between the 
tested parameters and the environmental (soil depth, water retention, input radiation, and 
connectivity) and ecological variables (e.g., distribution of soil types, plants, and animal 
functional groups, functional group richness). Such a database is crucial as a starting point for 
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gaining knowledge about the relationships between geometry and urban ecology on an 
ecolope. This knowledge will be then leveraged into the ontology (see D4.1). 

4.5 Conclusions 

The conceptualisation and design of the MiMo experiment allows consolidating the data and 
knowledge management layer of the ECOLOPES platform, and elicits its general technical 
requirements in terms of data, data structures, computation, chaining and integration, and 
other concerns. By the end of the related technical work, a first stable version of the ecological 
model will be deployed and integrated with the platform’s data warehouse, and mechanisms 
will be put in place to execute the model autonomously and continuously.  

5. SOFTWARE DEVELOPMENT APPROACH FOR ECOLOPES 

The software development approach adopted in ECOLOPES takes into account the type of 
applications, their maturity, and intended usage and lifecycle. Whereas Agile-based methods 
are best suited for developing mainstream applications and sustaining a healthy software 
development pipeline, they are not generally well suited for experimental development 
intended to prototype the results of research and innovation activities. The collaborative and 
tentative nature of software development in this context also does not fit well with waterfall-
based methodologies. Instead, we choose to manage software development based on an 
incremental approach, in which specific sections or components of the platform are designed, 
prototyped, integrated, and evaluated in each iteration. This approach also allows us to design 
and develop several sections in parallel, a process supported by the early definition of the 
system architecture, common data models and interfacing mechanisms. 

Accordingly, an overall system architecture was first designed, facilitating the deployment of 
the ECOLOPES platform’s digital infrastructure and its main components. On top of the 
infrastructure, a cloud-based environment that supports the deployment of algorithms and 
geometric computation components that have been developed and deployed (Section 7). This 
includes data warehousing capabilities and a collaborative environment where different 
components can be tested and refined. In the current iteration, while this environment is 
consolidated and leveraged to help develop the project’s analytical components, parallel 
efforts are invested to integrate the ecological models and deploy them, and operate them to 
generate knowledge as described in section 4.  

5.1 Data and process specification for all components 

Data and process specification for all components of the platform facilitates a common 
computational workflow and to work in an agile manner on parallel development efforts. 
Furthermore, by defining all inputs and outputs, a better understanding between the 
interdisciplinary development groups can be fostered and development becomes more 
efficient from the beginning. Table 3 demonstrates an overview of the collected information 
on components and data specifications to be later integrated into the platform. 
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Table 3: Overview of the data and process specification for all components.  

Component Description  Inputs  Outputs 

ECOLOPES Information Model 
(EIM ontology) 
(WP4) 

The reasoning framework for the ECOLOPES 
platform that leverages information from the 
KB and makes it available for design. 

KB Web Ontology 
Language (.OWL.) 

The abiotic environment and 
architecture dataset  
(WP4, WP7) 

Georeferenced datasets (abiotic conditions, 
socio-economic) and local building features 
(city scale and local scale) as well as 
information on normative constraints and 
design that aim to enable a comprehensive 
description and evaluation of a potential 
ECOLOPES site and serve as inputs for the 
modelling and simulation processes.  

International and 
national geo-
referenced 
datasets. 
EPW, GIS, OSM 

Open Database 
Datasets (WP4 
and WP7). 

Environmental models 
(WP3-7) 

Georeferenced dataset describing the 
environment (e.g., incoming radiations and 
soil depth per cell) as a result of 3D geometry 
and other environmental variables (e.g., 
incoming radiations, precipitations). 

Open databases, 
Raster datasets, 3D 
geometry 

Raster datasets 

Ecological model 
(WP4) 

Model of the interdependent spatial and 
temporal dynamics of soil/microbiota, plants 
and animals, as a response to building 
geometry, abiotic conditions and substrate.  
Data to parametrize the model is retrieved 
from open databases (GBIF, TRY, PREDICTS, 
BIEN, SoilGrids) and experiments 

Raster datasets 
from open 
databases and 
from 
environmental 
models 

Combined C++ 
model, 
Raster datasets 

The microbiota dataset 
(WP4) 

The experiments provide data on microbiota 
composition in different soils that are used 
by plants and animals. Most importantly, the 
microbiota model data will provide variables 
for catalysts for nutrient/carbon cycling and 
plant growth promotion to establish rates of 
soil development 

Field experiments Values for soil 
development, soil 
model 
parametrisation. 

The human dataset 
(WP6 and WP7) 

Analysed data on human comfort conditions, 
physiological, psychological and social 
benefits of nature to humans, with a focus on 
various health and well-being and comfort 
outcomes (including ecosystem services).  

Literature review, 
3D model (3DM/ 
GH file) 

Grasshopper file, 
metadata stored 
in a voxel model. 

The KB  
(WP3-7) 

Resulting data from the MiMo outcome 
(Ecological and Environmental Models). 

Ecological and 
environmental 
model outcome.  

Correlations 
between 
ecological, 
environmental 
and architectural 
parameters. 

The design generation and 
optimisation environment 
(WP5 and WP6) 

A set of algorithmic tools and processes 
which will run as a backend service and that 
will be used by the front-end tools. Based on 
the design outcome, the toolset will be 
validated by WP7.  

OWL/JSON 
3D terrain model, 
requirements from 
the stakeholders, 
fitness objectives 

3D model 
Voxel model 
.CSV, .JSON 
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ECOLOPES front-end tools 
(WP3) 

User interface with the developed data-
driven recommendation system through two 
front-end tools based on the Rhino platform. 
Through the tools, the user can access site-
specific real-time data from the data 
warehouse and algorithms from the design 
generation and optimisation environment.  

GH algorithms 
were developed by 
WP5, WP6, WP7. 
C++ programs 
developed by WP4. 

Grasshopper 
plugin, 
A web interface 
for ECOLOPES 
design and 
design- 
recommendation. 

ECOLOPES Multi-Species  
Habitat (WP7) 

Feedback from real-world design cases at the 
four different sites to validate the developed 
data-driven Recommendation system from a 
multi-species perspective, will provide real-
world parameters for optimisation (WP6) to 
achieve more realistic design outcomes. 

Real-world 
prototypes, 3D 
models in VR 

Results from 
monitoring in VR 
and from Real-
world prototypes. 

 

5.2 Conclusions 

The specification of data and processes reveals a broader understanding of how the 
components can be developed in smaller, or in the case of the Ecological Model (see D4.1) 
and the Design generation and optimisation environment (WP5, WP6) even in a larger cluster. 
Data inputs and data outputs are defined and thus, a messaging infrastructure to allow 
different systems to communicate through a shared set of interfaces can be developed in a 
parallel process. However, first, the system architecture for building the ECOLOPES platform 
needs to be designed. It is presented in the following Section 6. 

6. THE ECOLOPES SYSTEM ARCHITECTURE 

The ECOLOPES system architecture (Task 3.1, ECOLOPES System Architecture) implements the 
conceptual model of the ECOLOPES platform. It is designed to satisfy the overall functional 
requirements of individual processes encapsulated in the platform. In order to implement the 
ECOLOPES platform, cloud-based service-oriented architecture is selected to leverage the 
scalable resources of cloud computing and to provide the necessary flexibility and modularity 
for the implemented system to grow and adapt in later stages of development that aim to 
increase its technological maturity level. The use of cloud architecture to deploy the 
ECOLOPES platform also enables the configuration of specialised machines for each concern. 

Three different components constitute the core of the system architecture: a data warehouse 
server capable of storing shared data created for/by the system services; a geometric 
computation environment where specialised geometric computation programs can be 
deployed as services; and an ecological simulations server for running specialised programs 
that implement ecological models and non-geometric computation. Together, these three 
components constitute the backend of the ECOLOPES platform, which support the expert 
execution of designed workflows in stages.  

In addition to these three components, the ECOLOPES platform includes the user machine, 
which houses the user tools that connect to the backend and use its services. The tools allow 
general users to incorporate ECOLOPES services in their workflows. The user machine can be 
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implemented both as a personal computer or a cloud-based server as a shared environment 
(Figure 15).  

 

 

Figure 15: The architecture model of the ECOLOPES platform. 

 

This model of the ECOLOPES system architecture is shown in the following Figure 16. 
According to this design, the geometric computational environment orchestrates the relation 
between the user machine and the system backend. It channels requests to the ecological 
simulations environment and manages the related data input/output from the Data 
Warehouse. The architecture model also supports direct communication between any of its 
four conceptual components.  
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Figure 16: The first version of ECOLOPES functional architecture and its components.  
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Accordingly, a first version of the functional system architecture was designed to implement 
the architecture model taking into account the project’s development plan. Consequently, the 
focus of this first version of the system is on data management, deployment of main 
components (meeting their technical requirements), and establishment of the data exchange 
pipeline among the system constituents. The design of this first version is shown in the figure 
above, where components pertinent to the Data Warehouse conceptual module are visualised 
in black, ecological and computational algorithms and programs are represented in pink and 
evaluation components in yellow. These components are discussed in the following 
subsections.  

 

6.1 The software components  

The ECOLOPES system architecture has five main components, which are introduced and 
described in more detail in this section. 1) The EIM ontology with the Ecological Model; 2) the 
ECOLOPES algorithms, which link the generated datasets of the EIM Ontology with geometry 
objects; 3) the ECOLOPES data warehouse, which provides data to process the ECOLOPES 
algorithms; 4) the ECOLOPES computational simulation environment, which iteratively 
optimises design outcomes based on KPIs; 5) the ECOLOPES front-end tools that enable to 
interface with the data-driven recommendation system; and ultimately 6) the ECOLOPES 
Multi-Species Habitat which evaluates the ECOLOPES from the perspective of all inhabitants 
(plants, animals, microbiota, and humans).   

6.1.1 The EIM ontology component  

The EIM ontology is a key component for the data-driven recommendation system. It 
integrates the following five modelling components into one system by modelling its 
relationships to index and fuse data to form the basis for the development of the ECOLOPES 
algorithms and the ECOLOPES computational simulation environment. The generated models 
are interlinked with established feedback loops. All models refer to the same spatial (site-
specific) and temporal (monitoring, assessment time) parameters. For a further description of 
the modelling approach, see D4.1.  

6.1.2 The ECOLOPES algorithms component 

The goal of the component is to create a link between the EIM ontology and the computational 
model in Rhino through a voxel model. The computational model is a set of algorithmic and 
evolutionary computation processes which will run as a backend service and that will be used 
for the front-end tools (the Rhino plugin). Based on the design outcome, the algorithms will 
be validated. For a further description of the evolutionary generative design process and the 
voxel model, see D5.1.  

6.1.3 The ECOLOPES data warehouse component 

The component stores all ECOLOPES-relevant data and makes it available to the algorithms-, 
computational simulation environment, and front-end tools components. It also stores 
geometry data which includes the voxel model, generative design outcomes, 3D analysis and 
simulation results, and metadata.  
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6.1.4 The ECOLOPES computational simulation environment component 

The component converts the data-integrated computational model (Section 6.1.3) into a 
computational simulation environment by computational simulations (generative design and 
optimisation), multi-criteria analysis and rating strategies that enable decision-making 
processes for the design cases (by defining KPIs and interrelationships/hierarchies between 
them + expert knowledge); and second, by validating the computational workflow to ensure 
integration and interoperability through the design cases in preparation of design validation 
(envelope and building block evaluation).  

6.1.5 The ECOLOPES front-end tools component 

The component enables users to interface with the developed data-driven recommendation 
system through two front-end tools based on the Rhino platform. Through the tools, the user 
can access site specific real-time data from the data warehouse and algorithms from the 
algorithm component to visualise the simulated output of the EIM Ontology for a specific 
period of time, and to apply it to a building design at the selected location. The tool 
recommends a series of evaluated and optimised design outcomes based on the ECOLOPES 
system to the user that consider the requirements of all inhabitants equally. Thus, it helps the 
user in the design decision-making process.  

6.1.6 The ECOLOPES Multi-Species Habitat component 

The component provides feedback from real-world design cases at the four different sites to 
validate the developed data-driven recommendation system from the perspective of all 
inhabitants (humans: comfort and well-being; plants + animals + microbes: 12 months Building 
Block analysis, and by comparing the outcomes for all sites. It will provide parameters to the 
computation simulation environment component for further optimising to achieve the best 
design outcome.  

6.2 Advantages of the drafted system for the ECOLOPES project 

The architecture design applies a separation of concerns between data, geometric 
computation, and ecological simulations, and addresses the specific technical requirements 
of each separately. This resulted in the definition of the aforementioned components. 
Specialised machines can be deployed to support each component, thereby allowing the 
system to scale, and evolve easily. This also facilitates platform instantiation and deployment 
in different environments, as well as its seamless integration with other complementary 
platforms or programs that run on top of Rhino and Grasshopper or that are capable of 
leveraging the data generated over the analysis and evaluation of specific design cases.  

In the short run, the architecture design also allows specialised and parallel development of 
the platform’s data management approach, its ecological models, its geometric computation 
services, and user tools.  

6.3 Technical requirements for building the ECOLOPES platform 

To develop a platform architecture for the ECOLOPES data-driven design recommendation 
system, first the technical requirements from the stakeholders as well as the user of the 
platform need to be well understood and defined (Ecologists represent the non-human 
stakeholders). Only a common approach fosters a better understanding between the 
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interdisciplinary development groups and helps to define the setup and features that the 
design platform needs to include. Table 4 shows some examples for user requirements from 
the stakeholders that were translated into technical requirements. 

Table 4: Example of user requirements from ecologists and architects for the ECOLOPES design platform.   

User requirements (UR) Technical requirements (TR) Priority rating based on 

MoSCoW framework 

M-Must/ S-Should/  

C-Could/ W-Won't have 

UR1: As an ecologist, I want to measure the 
biodiversity (=abundance of FG) for an 
ecolope. 

TR1: Algorithm and UI to calculate and display 
count for all species/ FG, output as number, 
or Shannon Index. 

M 

UR2: As an ecologist, I want to 
choose/customise the ecological objectives 
of the ecolope, e.g. target specific functional 
groups (FG). 

TR2: Enable an 
animal/plant/microbiota/soil/human/abiotic
- aided design.  
TR3: User-driven selection of FG, parameters 
(Also requires a UI). 

M 

UR3: As an ecologist, I want to choose the 
best management options to reach the 
ecological objective for the ecolope. 

TR4: UI to choose management options from, 
e.g. mowing pattern, to simulate different 
scenarios. 

M 

UR4: As an architect, I want to choose which 
information (e.g. soil structure, surface 
materials, microbiota, plant species, animal 
habitats, biodiversity, endangered species, 
climatic conditions, degree of 
environmental pollution, land-use, building 
regulations and laws, nature protection) the 
digital terrain model should contain. 

TR5: Combine digital elevation model (DEM) 
of the envelope design (geometry) with the 
metadata stored in the voxel model.  
TR6: Method for visualising different analysis 
outcomes, e.g. endangered species 
(Also requires UI). 

M 

UR5: As an architect, I want to see design 
iterations in real-time with the KPI values of 
each design iteration. 

TR7: Evolutionary computation in real-time 
will depend on the processing capacity of the 
cloud-based platform. UI for showing the KPIs 
and analysis results. 

S 

UR6: As an architect, I would like to select 
KPIs for each of the stakeholders 

TR8: KPIs need to be predefined. UI to query 
from the database the KPIs wanted for an 
envelope design.  

M 

UR7: As an architect, I would like to visualise 
the impacts of geometrical manipulation on 
the KPIs per stakeholder. 

TR9: Recompute KPI values as feedback for 
the EIM Ontology and EIM.  

S 

  

6.4 Conclusions 

By the number of partners and disciplines involved in the ECOLOPES project, diverse datasets, 
and processes are involved that will have to be first considered, and then integrated into the 
platform. Thus, the system architecture will have to offer a flexible and scalable solution in 
order to guarantee a well-adapted service. However, the creation of highly complex modelling 
approaches such as the ECOLOPES data-driven recommendation system include a proper 
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exploration and experimentation process which involves the development of preliminary 
algorithms and combinations of modelling methods for which test datasets and a common 
shared ‘playground’ is required. The ECOLOPES sandbox is a preliminary version of the 
ECOLOPES platform with a more simplified system architecture, which will be described in 
Section 7.  

7. THE SANDBOX – A CLOUD-BASED PLATFORM FOR ECOLOPES  

The implementation of the ECOLOPES platform architecture started by deploying its digital 
infrastructure in the cloud to create an environment where prototypical components can be 
deployed, evaluated, interconnected, and refined collaboratively. This digital infrastructure is 
called the ECOLOPES sandbox, and provides the necessary computational capacity and 
resources to execute different types of components, and it is organised according to the 
system architecture design (Section 6). It implements its three components (data warehouse, 
geometric computation environment, and ecological simulation environment) prototypically, 
in a manner that satisfies the minimum technical requirements. At this stage of development, 
the ECOLOPES sandbox acts as since September 2021 as a fully functioning cloud-based testing 
environment, a backend, where services and components can be integrated (Task 3.3, 
Backend development and integration). It can be accessed by interdisciplinary algorithm 
developers within the consortium, students, and testers.  

7.1 The sandbox – the 1st prototype of the computational 
platform 

The sandbox is the 1st prototype of the ECOLOPES computational platform (SO1) in the 
ECOLOPES project. The system architecture of the ECOLOPES sandbox is rather a simplified 
version of the ECOLOPES platform, but it outlines how its three main services are connected 
(Figure 17): 1) Data storage, 2) computation, and 3) algorithm production (in Grasshopper). It 
is developed and maintained by MCNEEL and fully operating from September 2021. 
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Figure 17: The three main services of the ECOLOPES sandbox.  

7.2.1 Data storage 

The data storage server is a Linux cloud server which can be accessed through NextCloud, a 
free file sharing and collaboration platform. The server enables file storage and the live 
exchange of analysed data in a cloud service. The Linux server is a preliminary version of the 
ECOLOPES data warehousing infrastructure with an existing cloud infrastructure for storing 
information, especially in relation to WP4, including the ECOLOPES database that includes all 
data, including spatial-temporal, voxel and 3D models (Task 3.2). The data storage can be 
accessed through NextCloud: https://data.mcneelresearchprojects.com/ (Figure 18). MCNEEL 
provided training and documentation for all technical partners on how to use the ECOLOPES 
data storage for testing and storing datasets (WP4) as well as 3D geometry (WP5). 

 

 

Figure 18: The cloud infrastructure for the ECOLOPES data storage.  
 

 
 

https://data.mcneelresearchprojects.com/
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Furthermore, the purpose of the NextCloud data storage is:  
 

● Upload and share datasets from individual stakeholders in the cloud 
● Upload sample datasets for individual models 
● Create an algorithm library for developing the ECOLOPES Algorithms -, computational 

simulation environment -, and front-end tools components. Upload algorithms for 
calculation of data processing (GH definitions) 

● Save analysis and simulation results, make them available to stakeholders 
 
Furthermore, an SQL database (MariaDB) is hosted in parallel to the NextCloud data storage 
(Figure 19). This SQL database can be accessed by software components of WP4 implemented 
in R (D5.1, Figure 17) as well as WP5 software components implemented in Python and 
integrated with Rhino through the Hops interface (D5.1, section 2.4.3).  
 

 
 

Figure 19: The SQL database is integrated.  

7.2.2 Rhino.Compute server 

Rhino and Rhino.Compute were chosen as a framework for the development of the ECOLOPES 
platform (Section 2.4.2). In September 2021, a Rhino.Compute server for ECOLOPES was 
deployed by MCNEEL (Figure 20). Technically, it is a Windows cloud server where Windows 
Server 2019 runs on a virtual machine. It provides a user interface for communication with 
local machines through the Grasshopper Hops components (Section 2.4.3), and through the 
Rhino.Compute AppServer (Section 2.4.2) that displays the computed geometry and data in a 
standard web browser. Another advantage of cloud computing with Rhino.Compute is that 
computationally heavy analysis and simulation models (WP5 and WP6) can be processed. 
Guidelines on how to connect to the ECOLOPES Rhino.Compute server for processing 
Grasshopper algorithms were documented and communicated to all technical partners. The 
server can be accessed through the following link:  compute.mcneelresearchprojects.com.  
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Figure 20: The ECOLOPES Rhino.Compute server, a framework for the development of the design generation 
and optimisation environment (Section 3.5).  

7.2.3 The algorithm production server  

The Heroku server stores Grasshopper algorithms to be computed by Rhino.Compute and the 
Rhino.Compute.AppServer servers. Thus, WP3–WP7 can upload their custom algorithms to 
Heroku. This Algorithm production server is a dynamic library for all scripts related to 3D 
geometry objects based on the Rhino platform (Figure 21).  

 

Figure 21: The Heroku server makes GH algorithms or Hops components available on your desktop/ they are 
computed remotely.  

7.2 Technical details on the sandbox setup  

The Sandbox is hosted on a company-owned cloud server infrastructure by a private web 
hosting company in Frankfurt am Main (https://webhoster.de/webhosting/). In contrast to 
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AWS, all servers are located in Germany and technical support is provided by a small-size 
trained team. The sandbox can be scaled and adapted to the storage and processing 
requirements in the ECOLOPES project. Table 5 provides an overview of the setup. Besides the 
technical details, it includes the financial implications for the development of a new design 
platform. 

Table 5: The Sandbox setup. 

Component Description  Set-up Costs in EUR (since 

September 2021) 

1. Data storage server Linux server with NextCloud for all 
partners. 

Storage: 400 GB 
 

28,75/ month  

2. Rhino.Compute 
server 

Windows Cloud Server.  
Windows Server 2019 license.  

CPU: 4 cores (64-bit) 
Storage: 400 GB 
RAM: 16 GB  

56,35/ month 
1195,00 (once) 

3. The algorithm 
production server  

Heroku server. - US 14,00/ month 

Domain The domain is automatically 
connected to the server. 

- 15,00/ year 

 

7.3 Testing of the sandbox: ECOLOPES plugin for Grasshopper 

The ECOLOPES front-end tool is a free Grasshopper plugin developed by SAAD, UNIGE, VIE, 
TEC, and led by MCNEEL (Task 3.4, Frontend development). Its aim is to generate, analyse and 
optimise geometry models of envelope designs to gain knowledge about the ecological 
performance of the design outcome and its impact on the city. Thus, the plugin contains 
Grasshopper components for form generation from algorithms that will be developed by WP5 
and WP6, and for environmental and ecological analysis developed by WP3-WP7. Further, the 
plugin will include new Grasshopper components that bridge the gap between raster and 
geometry data, such as the ‘Voxeliser’ and the ‘Rasteriser´ (developed by WP3) (Figure 22). 
Lastly, the Expert database and the KB, hosted on the Linux cloud storage setup, can be 
accessed by specific Grasshopper components developed by MCNEEL. Also, geometry and 
analysis data can be stored and sent back to the KB.  

There are four groups of Grasshopper components for the plugin: 1) Components for data 
exchange, 2) components for form generation, 3) components for analysis including ecological 
analysis, solar radiation, soil depth, water retention and connectivity as well as components 
that can voxelize geometry models and export it as raster data, 4) components for KPI 
simulation (filtering, ranking, correlations) and optimisation, and 5) preview components that 
visualise data for each inhabitant and display the final ecolope design. 

Grasshopper components are written in the C# or Iron.Python language. These components 
and other algorithms can be compiled as Hops components which allow interfacing with the 
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implemented Rhino.Compute platform. Using Hops allows outsourcing resource-intensive 
processes which are driven from your local machine.  

 

 

Figure 22: Example how the ECOLOPES plugin for Grasshopper could look like.  
 

8. CONCLUSIONS AND RECOMMENDATIONS FOR THE NEXT 

VERSION 

This report has described the technical requirements associated with the ECOLOPES platform 
development and deployment. It has showcased the state-of-the-art of similar platforms with 
related applications and discussed their capabilities with respect to comparable 
functionalities.  

It has also described the design of the computational workflow that specifies how different 
components of the platform are chained, and how data needs to be managed to support the 
processes inherent in the ECOLOPES approach.  

It discussed how the ecological models are integrated to create the platform’s knowledge 
generation framework, which enables the collection and exploitation of fundamental data 
pertaining to the relationship between architecture and ecology.  

Based on the design of the computational framework and the knowledge generation 
framework, the requirements in terms of data exchange and interfacing mechanisms were 
elicited and documented. In addition, the overall architecture model was defined to support 
a scalable and flexible system capable of supporting the research activities conducted by 
experts as well as the resolution of use cases brought forward by architects and designers.  
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The architecture was prototypically implemented under the Sandbox, which deployed all the 
necessary digital infrastructure required, and provided an environment that facilitates the 
deployment, testing, and evaluation of computational and analytical components.  

In summary, the major achievements in terms of eliciting the requirements of the ECOLOPES 
platform and prototyping it can be described in the following: Eliciting the requirements of 
the digital infrastructure and system architecture, and deploying a fully functional production-
level infrastructure on top of which the platform can be easily installed. Designing the data 
pipeline across the different components of the platform, including input/output interfaces 
and data exchange mechanisms. Consequently, a data management layer that supports data 
storage, service, and exchange was implemented. In addition, progress was achieved on 
ecological model integration, through the MiMo experiment.  

In the coming phase, the development and deployment of the ECOLOPES platform will build 
on top of the technical requirements, technical designs, digital infrastructure, and functional 
prototypes developed so far in the project, in order to deploy a first complete version of the 
platform, which connects its components more systematically end-to-end.  

In the short run, the integration of the ecological models and their functional deployment and 
connection with the data management components of the architecture will be realised. This 
will be accompanied by the creation of a first elaborate version of the ECOLOPES data model 
that governs how data is exchanged between ecological and geometrical components. In 
parallel, we will aim for a first stable deployment of analytical algorithms and programs that 
support the design, analysis and evaluation of envelopes, on top of the Sandbox environment. 
This will support the execution of the ECOLOPES design, analysis, and optimisation processes 
end-to-end. 
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