

 Page 1

ECOLOPES
ECOlogical building enveLOPES: a game-changing design approach for

regenerative urban ecosystems

H2020-FET-OPEN-2021-2025
Action number 964414

D5.2
ECOLOPES Voxel Model Demo

Dissemination level: Public

Contractual date of delivery: Month 30, 30 September 2023
Actual date of delivery: 28 September 2023

Work package: WP5
Task: T5.1
Type: DEMO

Approval Status: Submitted
Version: v0.1

Number of pages: 30
Filename: D5.2_Ecolopes_ECOLOPESVoxelModel_20230930_v0.1.pdf

Abstract
This delivery summarily introduces conceptual and technical characteristics of the ECOLOPES Voxel Model
(the detailed description can be found in D5.3 ECOLOPES Voxel Model) and focuses on the ECOLOPES
Voxel Model demo. The demo describes the steps and tools involved in utilizing the ECOLOPES Voxel Model,
especially in connection with the EIM Ontology and the ECOLOPES Computational Model, and the tools
enabling the designer to exchange data with the Rhino / Grasshopper environment. This deliverable relates
closely to deliverables D5.3 ECOLOPES Voxel Model, as well as D4.2 Interim EIM Ontology and D5.4
ECOLOPES Computational Model.
The information in this document reflects only the author’s views and the European Community is not liable for any use that may be
made of the information contained therein. The information in this document is provided as is and no guarantee or warranty is given
that the information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

 Page 2

co-funded by the European Union

HISTORY

Version Date Reason Revised by
v0.2 27.09.2023 Revised Deliverable Michael Hensel
 27.09.2023 Revised Deliverable Jakub Tyc

AUTHOR LIST

Organization Name Contact Information
TU Wien Michael Hensel michael.hensel@tuwien.ac.at
TU Wien Jakub Tyc jakub.tyc@tuwien.ac.at

mailto:michael.hensel@tuwien.ac.at
mailto:jakub.tyc@tuwien.ac.at

 Deliverable 5.2 Version 1

 Page 3

EXECUTIVE SUMMARY

This delivery contains a demo of the ECOLOPES Voxel Model. We describe the steps and tools
involved in utilizing the ECOLOPES Voxel Model (D5.3 ECOLOPES Voxel Model) in connection
with the other two key components of the ontology-aided generative computational design
process: the EIM Ontology (D4.2 Interim EIM Ontology) and the ECOLOPES Computational
Model (D5.4 ECOLOPES Computational Model). This includes in particular the tools that enable
the designer to exchange data with the Rhino / Grasshopper environment.

The ECOLOPES Voxel Model consists of a SQL database. Only data that can be expressed
spatially is contained within the voxel model. This data is derived from (1) open and expert
databases, (2) the ecological model (D4.1 Preliminary EIM Ontology), (3) the knowledge
generation framework (D3.2 Draft ECOLOPES platform architecture), (4) the EIM Ontologies
(D4.2 Interim EIM Ontologies), and (5) computational simulations, generated in preparation
of or as part of the generative phase of the process.

Section 1 summarily introduces conceptual and technical characteristics of the ECOLOPES
Voxel Model. The detailed description can be found in D5.3 ECOLOPES Voxel Model.

Section 2 contains the ECOLOPES Voxel Model demo.

 Deliverable 5.2 Version 1

 Page 4

ABBREVIATIONS AND ACRONYMS
ASP Answer Set Programming

CAD Computer Aided Design

DEM Digital Elevation Model

DSM Digital Surface Model

EA Evolutionary Algorithm

EIM ECOLOPES Information Model

EM ECOLOPES Ecological Model

GA Genetic algorithm

GCD Generative Computational Design

GH Grasshopper

JSON JavaScript Object Notation

KGF Knowledge Generation Framework

KPI Key Performance Indicator

OWL Web Ontology Language

RDB Relational Database

RDF Resource Description Framework

SQL Structured Query Language

WP Work-package

PFGs Plant Functional Groups

AFGs Animal Functional Groups

 Deliverable 5.2 Version 1

 Page 5

TABLE OF CONTENTS
History 2
Author list 2
Executive Summary 3
1 Introduction 6

1.1 The ECOLOPES Computational Framework 6
1.2 The Ontology-aided Generative Computational Design Process 7
1.3 The ECOLOPES Voxel Model 7

2 ECOLOPES Voxel Model Demo 15
2.1 Structure of the ECOLOPES Voxel Model 15
2.2 Structuring Spatial Data for Inclusion in the ECOLOPES Voxel Model 16
2.3 Loading data into the ECOLPES Voxel Model 18
2.4 Default Web-base Interface for ECOLOPES Voxel Model Data (pgAdmin) 19
2.5 Rhinoceros / Grasshopper Interface for the ECOLOPES Voxel Model 20

2.5.1 Listing available voxel levels in the ECOLOPES Voxel Model 20
2.5.2 Retrieving metadata from the ECOLOPES Voxel Model 21
2.5.3 Retrieving the voxel index data (vox_idx) and geometric data from the ECOLOPES
Voxel Model 21
2.5.4 Retrieving color data from the ECOLOPES Voxel Model 22
2.5.5 Retrieving the list of available data layers from the ECOLOPES Voxel Model 23
2.5.6 Retrieving a single data layer from the ECOLOPES Voxel Model 24

2.6 Inserting new Geometry into the ECOLOPES Voxel Model 24
2.6.1 Simplified method for exporting Rhinoceros 3D geometry to the ECOLOPES Voxel
Model 25

2.7 Exporting Data from the ECOLOPES Voxel Model 25
2.7.1 Exporting simplified 2.5D geometry from the ECOLOPES Voxel Model 25

2.8 Integrating the ECOLOPES Voxel Model with the EIM Ontology 27
2.8.1 Querying the ontological representation of the ECOLOPES Voxel Model data in
Grasshopper 29

3 Publication Plan 30
References 30

 Deliverable 5.2 Version 1

 Page 6

1 Introduction

In section 1 we summarily describe the ECOLOPES Computational Framework to indicate the
context and location of the ontology-aided generative computational design process.
Secondly, we summarize the ontology-aided generative computational design process which
includes three key components: (1) the EIM Ontology (D4.2 Interim EIM Ontology), (2) the
ECOLOPES Voxel Model, and (3) the ECOLOPES Computational Model (D5.4 ECOLOPES
Computational Model). Finally, we summarily describe key conceptual and technical
characteristics of the ECOLOPES Voxel Model. The detailed description can be found in D5.3
ECOLOPES Voxel Model.

1.1 The ECOLOPES Computational Framework

The ECOLOPES computational framework, its technical components and data flow between
the latter (computational workflow) was elaborated in WP3 and the updated version
presented in D3.3. (M29) (Fig. 1).

The ECOLOPES Computational Framework facilitates informed multi-species design for
ecological building envelopes, that we term ecolopes (Fig. 1) (Weisser et al. 2022). It includes
technical components such as the Ecological Model, the Knowledge Base, the design
generation environment, which we term “ontology-aided generative computational design
process”, the Optimization environment, and components for validation. The design
generation environment (ontology-aided generative computational design process)
developed in WP5 (D5.3 ECOLOPES Voxel Model and D5.4 ECOLOPES Computational Model)
facilitates design generation and the generation of design search space populated with
alternative solutions that can be analyzed, evaluated and ranked. The ECOLOPES
Computational Model provides input for optimization, the output of which provides the basis
for the overall validation (WP7) of the ECOLOPES Computational Framework.

Fig. 1: Ecolopes computational framework showing integrated (black frame) and non-
integrated technical components (yellow frame) (D3.3).

 Deliverable 5.2 Version 1

 Page 7

1.2 The Ontology-aided Generative Computational Design Process

The ontology-aided generative computational design process consists of three key
components: (1) the EIM Ontologies (D4.2 Interim EIM Ontology) that guide the design process
in its different stage and can be queried by the designer, (2) a voxel model that integrates
relevant datasets for the design process (D5.3 ECOLOPES Voxel Model), and (3) the ECOLOPES
Computational Model (D5.4 ECOLOPES Computational Model) which comprises specific
algorithmic processes implemented the Rhino / Grasshopper environment.

In the generative computational design process data is collected from different sources,
including databases, the Ecological Model, KGF, simulations, etc. This data is utilized with the
purpose to generate design variations for a context-specific ecological building envelope. The
ECOLOPES Voxel Model offers a key utility for the different stages of the generative
computational design process, which includes the translational process and (2) the generative
process. The translational process serves to lay out the project-specific problem space for
design. In this process requirements of the design brief for a given project and site and
additional requirements are analyzed, correlated, spatialized, and prepared for design
generation. This process is ontology-aided and involves the preparation of the datasets
referred to as maps and networks (D5.1 Development Process for ECOLOPES Algorithms). The
generative process serves to extend the solution space for design. This entails generation of a
range of design outputs that can be evaluated and ranked. This iterative process is ontology-
aided and culminates in the generation of (1) spatial organization expressed as the dataset
volumes, and (2) site and building geometry expressed as the dataset landform (D5.1
Development Process for ECOLOPES Algorithms). Each design outcome will consist of (1) a CAD
model, (2) corresponding datasets contained in the voxel model, and (3) ontological output.

1.3 The ECOLOPES Voxel Model

The ECOLOPES Voxel Model is described in detail in D5.3 ECOLOPES Voxel Model. Here we only
provide a short summary. To store 3D voxel data, we utilize Relational Databases (RDBs, such
as SQL databases) as technology agnostic solution. The ECOLOPES Voxel Model receives data
from different sources (databases, EM, KGF, GIS simulations), and the data can be indicated
and / or called via the EIM Ontologies. Data contained in the voxel model can then be utilized
in the data-driven generative computational design process. The ECOLOPES Voxel Model uses
a range of technologies to link the voxel data encoded in an RDB-based voxel model with the
Rhinoceros / Grasshopper interface (see D5.3.).

In the interdisciplinary ECOLOPES research project researchers have different disciplinary
expertise and approaches, as well as varied computational proficiency. For this reason, a self-
explanatory and technology agnostic solution was chosen for the ECOLOPES Voxel Model. We
utilize Relational Databases (RDBs, such as SQL databases) that are generally widely
implemented and most contemporary programming languages contain well developed
bindings for RDBs. User interaction will be realized through the ECOLOPES front-end tools
(WP3) based on Rhinoceros / Grasshopper; 3D CAD software widely used in the context of
architectural design. In the ECOLOPES research project it is necessary to correlate and
spatialize data pertaining to different disciplines, including ecological, environmental, and
architectural data, as well as data pertaining to landscape architecture. The ECOLOPES Voxel
Model receives data from different sources, including relevant databases, the ecological
model, the knowledge generation framework, and in project specific cases also various

 Deliverable 5.2 Version 1

 Page 8

simulations executed in Geographic Information Systems (GIS) software. Relevant data can be
indicated and / or called via the EIM Ontologies. Data contained in the voxel model can then
be utilized in the data-driven generative computational design process through which design
outputs are created that consist of (1) geometry contained within the CAD model, (2) design
specific data contained in the voxel model, and (3) ontological output. The resulting data
package can then be used within the optimization process to derive design outputs with
optimized architectural and ecological performances. The data integration approach currently
implemented in Tasks T5.1, T5.2 and T4.7 supports the ontology-aided generative
computational design process for designing ecological building envelopes. A conceptual
overview of this data integration approach is shown in Figure 2.

Fig. 2: This updated version of Figure 20 from Deliverable D5.1 illustrates the conceptual
approach for systematic data integration and structuring. This approach is being implemented
to support the ontology-aided design process. The GraphDB component stores the EIM
Ontologies and establishes interfaces with external datasets and the Ecolopes Voxel Model by
utilizing Ontop GraphDB virtualization and mapping techniques.

The ECOLOPES Voxel Model stores multi-scalar data that describes geometry and chosen
environmental conditions. The EIM Ontology implemented in the GraphDB environment
integrates external datasets, such as species occurrence data with spatial data contained in
the RDB-based voxel model. The GCD process is initiated by user interaction translated into
the Dataset Networks and the computational components are providing feedback based on
the GraphDB reasoning capacities. In the ECOLOPES Voxel Model openly available datasets
are used to generate the initial datasets contained in the voxel model. To enable integration
of the diverse disciplinary datasets, the concept of multi-scalar data was introduced by way of
inclusion of levels within the voxel model structure (D5.1 Development Process for ECOLOPES
Algorithm). Each level is introduced into the ECOLOPES Voxel Model to facilitate interaction
with an external computational procedure.

 Deliverable 5.2 Version 1

 Page 9

The ECOLOPES Voxel Model uses a range of technologies to link the voxel data encoded in an
RDB-based voxel model with the Rhinoceros / Grasshopper interface. Figure 3 shows the
chosen software technologies that are used in the ECOLOPES Voxel Model implementation.

Fig. 3: Technologies utilized to implement the ECOLOPES Voxel Model were linked in a
sequence. RDB-based voxel data can be queried through the McNeel Python Hops application
packaged into a single executable file. This Python application exposes voxel data in the
McNeel Rhinoceros/ Grasshopper environment for user interaction.

This implementation builds on the technologies readily available within the Rhinoceros
software ecosystem. Rhinoceros and Grasshopper are widely used tools in architectural
design. Originally, McNeel introduced GHPython components into the Grasshopper
environment, based on the IronPython (IronPython, 2017). To overcome some of the
limitations posed by the IronPython, we used the GH Hops components, which adds external
functions to GH through Rhino.Compute. Hops integrates a modern Python interpreter
(CPython 3.9) with the Rhinoceros / Grasshopper environment through a REST AP-based
interface. ECOLOPES Voxel Model GH definitions are written as Hops components to establish
an interface with the RDB. The SQLAlchemy Python library (SQLAlchemy, 2018/2023) is used
to provide an SQL-dialect-agnostic solution for integrating RDBs with the digital design process
implemented in the Rhinoceros software. For the RDB-based ECOLOPES Voxel Model,
different types of RDBs, including SQLite, MariaDB and PostgreSQL, have been prototyped and
tested. Python technology was chosen due to its wide compatibility. Python version 3.9 is
compatible with the McNeel libraries. The Python Hops application has been packaged into a
single executable file for internal distribution. The presented application has been successfully
tested on both Windows and MacOS platforms, including the ARM based M1 architecture.
Data contained in the ECOLOPES Voxel Model has been created with a range of open-source
geospatial analysis tools, such as QGIS (Open-Source Geospatial Foundation Project 2020),
Whitebox Tools (Lindsay 2016) and SAGA GIS (Conrad et al. 2015). Figure 4 shows the datasets
that are currently encoded in the ECOLOPES Voxel Model.

 Deliverable 5.2 Version 1

 Page 10

Fig. 4: Datasets contained in the ECOLOPES Voxel Model include geometric and classification
data. This includes environmental performance data such as, for instance, topographic
wetness index, as well as time series data describing insolation time and wind exposure.

The selected datasets are representative of different aspects of environmental performance
that are often used in urban planning (Wilson & Gallant, 2000; Conrad et al., 2015). The
datasets include solar and wind exposure, as well as topographic water-related conditions.
For solar exposure the average insolation time for each month in a year was computed. This
parameter, often described as sunlight hours, is commonly used to evaluate sunlight
availability in urban contexts. Topographic wetness conditions were evaluated using the
Topographic Wetness Index (TWI).

The role of levels within the structure of the voxel model facilitates specific functionality in
the GCD process. On the technological level, data expressed as levels in the Voxel Model is
materialized in the PostgreSQL environment either as SQL tables or as SQL table views. This
enables multiple external components to interact with the RDB-based voxel model by
querying the voxel data from the chosen level. The requirement of the GCD processes to
operate in different scales necessitates changes of extent and resolution to be handled within
the RDB environment. The architecture of the SQL database was planned considering
performance and efficiency, and repeated storage of the same data was avoided. Data can be
visualized and queried from the GH interface by using dedicated GH components, developed
to accommodate required functionalities. An example application of the developed
components was evaluated through the definition of GH component sequences. Each
sequence is constructed to facilitate a specific functionality, and the intended functionality is
tested by the designer. Furthermore, the designer can filter the data contained in the Voxel
Model by executing a predefined SQL query and interactively evaluate the outcomes of the

 Deliverable 5.2 Version 1

 Page 11

query. Lastly, multi-scalar voxel model data can be transformed into a graph-representation
that can be queried through the GraphDB endpoint. In result, simple SPARQL-based reasoning
queries can be executed directly on the data contained in the ECOLOPES Voxel Model. Figure
5 shows the different levels in the ECOLOPES Voxel Model that facilitate interactions between
different processes implemented within the GCD process.

Fig. 5: Overview of the selected levels contained in the ECOLOPES Voxel Model and their
relation to the computational procedures implemented in the three loops of the GCD process.
Outcomes of each loop can be merged with the input data and written to a separate table
(e.g., vox_lvl30_09_upd). This updated voxel-based representation can be merged with the
large-scale data (vox_lvl40) and visualized in Rhinoceros.

 Deliverable 5.2 Version 1

 Page 12

To achieve the goal of multi-scalar data integration within the RDB environment, a site-aligned
coordinate system was implemented. The role of the ontology-aided generative
computational design process is to generate site-specific design proposals. The coordinate
space of the data to be queried by EIM Ontology 2 and EIM Ontology 3 is aligned with the site
boundary dimensions and the rotation of the site outline. These site-specific conditions can
be described as a 2D rectangle with fixed dimensions and rotation. By extruding this 2D
boundary by a fixed distance, a 3D bounding box that describes the site geometry is created.
To support the operation of EIM Ontology 2 and EIM Ontology 3, an interactive reprojection
of the RDB-based voxel model data from the original coordinate system to the site-aligned
coordinate space was required. The implementation of geometric operations such as
translation and scaling in the RDB environment is relatively straightforward. Inclusion of the
rotation component was required since it would not be reasonable to limit the generative
design process to operate exclusively on north-south oriented volumes for any given site. To
include the rotation component in the internal transformation function executed in the RDB
environment, custom SQL functions were developed. Those functions are used to map the
coordinates between the large-scale voxel data and the site-scale coordinate system. Since
the vertical location is not influenced by such a transformation, this problem is reduced to a
composite transformation in 2D. In computer graphics, geometric transformations are
conventionally utilizing homogeneous coordinates since all common transformation
operations can be expressed as 3x3 matrices. In result, these operations can be combined by
a simple vector multiplication operation. For this reason, the implemented transformation
function required the voxel nodal point coordinates to be expressed as homogeneous
coordinates. In homogeneous coordinate space a single point is expressed in a 3x1 matrix.
Geometric operations of translation and rotation are represented as 3x3 matrices. The
coordinate transformation needed to be implemented within the RDB environment. Since
matrix operations are not implemented as a part of the SQL function syntax, coordinate
transformation needs to be expressed as a system of linear equations.

For each required level a new SQL table view utilizing these functions was created. Finally,
different site-aligned coordinate systems contain data in different resolutions. To facilitate
this functionality, a simple aggregation function was used in the definition of the SQL table
view. In result, datasets contained in the ECOLOPES Voxel Model can be queried in multiple
resolutions and coordinate systems, both directly in the GH environment and indirectly
through the EIM Ontologies implemented in the GraphDB environment.

The integration of the ECOLOPES Voxel Model and the EIM Ontology is facilitated through the
Ontop Virtualization technology, which is part of the GraphDB software solution. The main
task in such a virtualization-based workflow is related to the description of how the tables,
columns, and primary keys in the RDB map onto graph structure in the GDB environment. On
the technological level, such mapping is declared as a set of ODBA/R2RML mappings, written
in a single file. This file is uploaded into the GraphDB instance when the RDB/GDB connection
is created. This process has been tested to enable the integration between the RDB-based
voxel model and EIM Ontology stored in the GraphDB environment. Initial tests showed that
for performance reasons file-based SQL databases, such as SQLite, should be avoided.
PostgreSQL and GraphDB server instances hosted on the same machine have shown sufficient
performance to execute the operations required for the integration between the ECOLOPES
Voxel Model and the EIM Ontology. Currently, each voxel model level contained in the RDB

 Deliverable 5.2 Version 1

 Page 13

can be interactively linked with the GraphDB instance, based on the provided OBDA/R2RML
mappings. As a result, the data contained in the RDB-based voxel model can be transparently
queried and reasoned using techniques implemented in the GDB environment.

The interactions between ECOLOPES Voxel Model, designer and the GCD components are
divided into three loops.

Loop 1 facilitates the configuration of networks in a voxelized 3D space, materialized in the
Rhinoceros CAD environment. It involves EIM Ontology 1, Rule-Based System 1 (associated
algorithms i.e., ASP), and CAD Model 1 as its main components of interaction in the
Translational Design Process of selection and distribution. Defining and spatially locating
design objectives and implementing design instructions derived from EIM Ontology 1, based
on feedback from Loop 2 and Loop 3, are some of the tasks that are addressed.

Fig. 6: Loop 1 of the generative design process.

Loop 2 facilitates the distribution of Volumes in a voxelized 3D space, materialized in the
Rhinoceros CAD environment. It involves EIM Ontology 2, Rule-Based System 2 (associated
algorithms i.e., ASP), and CAD Model 2 as its main components of interaction in the Generative
Design Process_1 of volume specification. Guiding the changes in maps (volumetric voxel data)
and 3D configuration of volumes, and implementing design instructions derived from EIM
Ontology 2, based on feedback from Loop 1 and Loop 3, are some of the tasks that are
addressed.

 Deliverable 5.2 Version 1

 Page 14

Fig. 7: Loop 2 of the generative design process.

Loop 3 facilitates the generation of landform geometry in a voxelized 3D space, materialized
in the Rhinoceros CAD environment. It involves EIM Ontology 3, Rule-Based System 3
(associated algorithms i.e., ASP), and CAD Model 3 as its main components of interaction in
the Generative Design Process_2 of landform generation. Guiding the geometric articulation
of the volume object and implementing design instructions derived from EIM Ontology 3,
based on feedback from Loop 1 and Loop2, are some of the tasks that are addressed. Detailed
elaboration of the functionalities implemented within these three loops is presented in the
report on D4.2 Interim EIM Ontology.

Fig. 8: Loop 3 of the generative design process.

Architectural designers can interact with the ECOLOPES Voxel Model both directly through the
dedicated GH interface and indirectly, while working with other GCD components which are
accessing ECOLOPES Voxel Model data in background. Different GCD components are
implemented in the three loops, as described in the Deliverables D4.2 Interim EIM Ontology
and D5.4 ECOLOPES Computational Model.

 Deliverable 5.2 Version 1

 Page 15

2 ECOLOPES Voxel Model Demo

The datasets contained in the voxel model can be utilized in the processes implemented within
the optimization workflow (WP6). At the end of the process implemented in the WP4 / WP5
workflow, both CAD-based and voxel-based representation of the geometry will be saved and
passed to the components positioned later in the ECOLOPES Computational Design Workflow
(Fig. 1). The results of the GCD process will be exported as a 3D CAD model in the Rhinoceros
format (.3dm). Detailed description of the outcomes generated in the GCD process is
described in D5.3 ECOLOPES Computational Model. Corresponding voxel-based data will be
exported as a single SQLite database file, containing domain-specific data related to the
environmental and ecological properties of the design outcome at the end of the ontology-
aided generative computational design process. This numerical information can be computed
as fitness objectives for the multi-objective optimization. As described in the sections above,
these fitness objectives are the KPIs that have been computed in the KGF (WP3). Additionally,
the ontological correlations will aid in the definitions of KPI priorities and design strategies.
The resulting optimized 3D design alternatives and metadata could also be appended into the
database file to enable an iterative process between the generative and optimization design
phases.

ECOLOPES Voxel Model combines a range of widely used technologies and diverse methods
of combining individual components have been investigated throughout the project. The
following description outlines an approach that foregrounds reproducibility by utilizing easily
available software tools. Such workflow is not optimized for performance or automatization
of repeatable tasks. This description is meant for demonstrative purposes and for this reason
the amount of detailed descriptions of minor functionalities has been reduced.

2.1 Structure of the ECOLOPES Voxel Model

The structure of the ECOLOPES Voxel Model is open-ended and the choice of the datasets
included is informed by the intended application of the data in the design task. Currently, an
initial selection of a few datasets has been made to probe the affordances of our approach, as
well as to guide the development of the ECOLOPES Voxel Model components.

The ECOLOPES Voxel Model has been developed to integrate data in multiple scales and to
enable interoperability between the datasets. This functionality has been developed by
introducing the following concepts into the ECOLOPES Voxel Model implementation: Design
operations are carried out in a user-defined scale, for which a resolution and a spatial extent
is chosen. For such fixed configuration, we use the term ‘voxel level’. Data contained in a single
voxel level, contained in the ECOLOPES Voxel Model, is organized, based on a unique value,
and referred to as the voxel (vox_idx). In technical terms, voxel index is at the same the
primary key of the SQL table storing data contained in each voxel level. As the underlying data
is prepared for a single voxel level, all properties are calculated for 3D, spatial coordinates that
can be represented with integer numbers. It needs to be noted that the physical size of the
voxel cells is calculated by multiplying those coordinates with the base resolution of the voxel
level. This allows the voxel model to represent datasets in arbitrary resolutions. The values
stored as voxel index are created by concatenating the three coordinates of the integer, spatial

 Deliverable 5.2 Version 1

 Page 16

coordinates. For example, a voxel cell located at vox_x = 1, vox_y =2 and voz_z = 3 would be
indexed with a “1_2_3” voxel index value. Each voxel cell contains the voxel index property,
the three voxel nodal point coordinates (vox_y, vox_y, vox_z) and an arbitrary number of
additional properties. In a tabular view, those properties are represented as additional
columns in the table. Each of those properties can be visualized as a false-color image in the
3D environment of the Rhinoceros 3D software. In this representation, visualization of the
additional voxel model properties looks like multiple layers of a 3D map. For this reason, the
name ‘data layers’ has been chosen to refer to the additional properties contained in the SQL
tables representing individual levels within the ECOLOPES Voxel Model.

Fig. 9. Left: Tabular representation of the ECOLOPES Voxel Model data that shows the different
columns that represent individual datasets encoded within the voxel model. Right: 3D
representation of the exemplary data layer generated with the implemented Rhinoceros 3D /
Grasshopper components.

Datasets stored in the individual voxel levels are representing different fragments of the real-
world location in which the design task will be executed. As described in the previous
paragraph, those fragments may vary in spatial resolution and the extent which they cover.
To ensure the correct location of those fragments, their relative location must be recorded.
For this reason, the vox_meta SQL table has been introduced. This table stores information
about the geometric location of the individual fragments, as well as their absolute location in
a standardized geographic coordinate reference system. Additionally, information describing
the resolution and rotation of individual voxel levels is recorded in this table.

2.2 Structuring Spatial Data for Inclusion in the ECOLOPES Voxel
Model

For demonstration purposes an exemplary raster data layer was selected and loaded into
QGIS. In this example we use Digital Surface Model (DSM) data which stores height
information. We generate the voxel nodal point coordinates (vox_x, vox_y, vox_z), as well as
an absolute height value (vox_z_cont) for each cell in this reduced 2.5D version of our
temporary voxel data. The easiest way to export raster data from QGIS into a .csv file is the
standard gdal2xyz tool. The generated file will contain three columns, the first two containing
spatial coordinates of all points in the raster and the third containing the values contained in
the raster data. Spatial coordinates are represented in the geographic coordinate reference

 Deliverable 5.2 Version 1

 Page 17

system, which needs to be set up in QGIS. In this simple example we are loading the .csv data
into Excel and referencing the data on a separate sheet for the export to the ECOLOPES Voxel
Model. In the second Excel sheet, basic data formatting tasks will be implemented. For
example, the vox_idx column is generated with a default Excel function as a concatenation of
the vox_x, vox_y and vox_z fields. The exported .csv file needs to be sent to the PostgreSQL
server and loaded into the required table (vox_lvl00 in this example). Figure 10 presents the
steps described above.

Fig. 10: Left: Exemplary DSM data loaded into QGIS interface. Right: Previews of the two Excel
sheets in which the data conversion is performed.

In this example, the raster data was loaded from a widely used raster data format (GeoTIFF)
using basic functionalities provided by QGIS and Excel software. Theoretically, multiple raster
files could be exported as layers and merged into a single .csv file and exported to the
ECOLOPES Voxel Model. Such a process would require user supervision, since the data
conversion process requires at least sanity checking at each step. While preparing input raster
data for the ECOLOPES Voxel Model, basic understanding of standard coordinate reference
systems used in the GIS systems is also required. Lastly, the initial .csv file generated with QGIS
is 85% larger than the raster-based equivalent. For this reason, such simplified workflow is not
efficient for large datasets. The final step in this part of the demonstration was the visual
checking of the loaded data in the Rhinoceros interface. Figure 11 shows the data loaded from
QGIS in this example, rendered as a 3D representation of the data contained in the ECOLOPES
Voxel Model.

 Deliverable 5.2 Version 1

 Page 18

Fig. 11: Voxel data generated in this example loaded into Rhinoceros 3D interface by utilizing
the developed ECOLOPES Voxel Model components. Colors represent the absolute height of
the points (vox_z_cont layer loaded from the DSM).

2.3 Loading data into the ECOLPES Voxel Model

The most straightforward method to load a medium-sized dataset into an SQL database
involves defining individual tables and filling it with data from the provided .csv file. SQL tables
can be created with the CREATE TABLE statement followed by the definition of required
columns and data types. Contents of a .csv file can be copied into the previously created table
in the PostgreSQL environment using the COPY statement.

SQL servers that are utilizing the client-server model are often installed on a separate server
with limited physical access. By default, PostgreSQL contains the psql command-line utility to
allow administrative operations on the server instance. SQL statements, such as the CREATE
TABLE and COPY statements can be executed with the use of psql utility. Although this method
might be considered very rudimentary, it displayed the highest performance in copying
medium-sized large datasets into the PostgreSQL instance. Properly formatted CSV data can
be written from Excel or using Python pandas library and uploaded in parallel chunks onto the
server storage. Then the psql utility can process the local file avoiding network latency
constraints.

 Deliverable 5.2 Version 1

 Page 19

Fig. 12: Top: Required psql query which allows very fast importing of csv data into the remote
PostgreSQL instance. Bottom: Data loaded with the psql tool can be visually inspected in the
pgAdmin interface.

Required conversions and the final formatting of the .csv file can be done using any software
tool which is familiar for the end user. The use of such widely adopted data formats would
allow the integration of datasets created with external tools, such as the ECOLOPES Ecological
Model. Initial tests on very small datasets can be initiated by sending the prepared .csv file
into the online PostgreSQL instance with a web-based administration interface, such as
pgAdmin. The following section shows how the data contained in the ECOLOPES Voxel Model
can be browsed in the pgAdmin interface.

2.4 Default Web-based Interface for ECOLOPES Voxel Model Data
(pgAdmin)

A widely used web interface for PostgreSQL databases is the open-source pgAdmin software.
This software allows for interactive and user-friendly administration of a PostgreSQL server
running externally (e.g., in the cloud). It exposes most of the functionalities of a PostgreSQL
server in a graphical interface. An overview of the functionalities most relevant for the
operation of ECOLOPES Voxel Model is presented in Figure 13.

 Deliverable 5.2 Version 1

 Page 20

Fig. 13: Overview of the functionalities available in the pgAdmin interface. Browser window (1)
showing a hierarchical overview of contents of the SQL database. Dashboard (2) provides basic
metrics related to the performance of the running queries and opened sessions. In the security
section (3) fine grained user permissions can be set. Contextual preferences menu allows to
modify defined table columns (4) or update the SQL code that defines a named view (5).

2.5 Rhinoceros / Grasshopper Interface for the ECOLOPES Voxel
Model

Data representation offered by the pgAdmin application is not well suited for any design
activity, because it is difficult to identify spatial patterns in data represented in a table. For
this reason, an interface between the ECOLOPES Voxel Model based on the PostgreSQL
technology and the Rhinoceros / Grasshopper software had to be created. In the following
paragraphs individual functionalities of the implemented components are described.

2.5.1 Listing available voxel levels in the ECOLOPES Voxel Model

The first required component was implemented to list the available voxel levels from the
ECOLOPES Voxel Model. This very simple functionality works as an entry point for all scripts
that are utilizing the ECOLOPES Voxel Model GH interfaces. As the development of the
components progressed, a need to filter out a few SQL tables appeared and this component
was used to facilitate this functionality. Figure 12 shows the use of this component. Simple
boolean toggle (switch button) need to be connected to this component to initiate the
computation. All implemented GH components are providing basic debug information in the
“info” outputs. This component outputs the prefiltered list of available voxel levels. The
remaining components shown in Figure 14 are standard GH components to select a single item
and to preview the contents of a list.

 Deliverable 5.2 Version 1

 Page 21

Fig. 14: Voxel levels available in the ECOLOPES Voxel Model can be retrieved using a dedicated
Grasshopper component.

2.5.2 Retrieving metadata from the ECOLOPES Voxel Model

A dedicated component for retrieving metadata describing the key parameters of the
individual voxel levels has been implemented. This component requires the name of a voxel
level as an input. The vox_lvl_name property is passed through the component to simplify the
layout of the multiple components and informs the data flow inside the algorithms
represented by the GH definition. Resolution, rotation, relative and absolute offsets are
returned by this component (see Section 2.1). These outputs are used in multiple components
positioned later in the exemplary Grasshopper scripts.

Fig. 15: Metadata describing individual levels contained within the ECOLOPES Voxel Model can
be retrieved inside the Grasshopper environment.

2.5.3 Retrieving the voxel index data (vox_idx) and geometric data from the ECOLOPES
Voxel Model

We implemented a GH component that enables the designer to retrieve the voxel index from
a single voxel level. This functionality allows the designers to use conventional GH techniques
for data checking, sorting and filtering with the data retrieved from the ECOLOPES Voxel
Model. Currently the geometric data is retrieved with the same component. Geometry
returned by this component is formatted as native Rhinoceros 3D point objects and can be
directly visualized using readily available tools. This component requires the voxel level name
as an input. Since a large query can take relatively long time to execute, a boolean toggle

 Deliverable 5.2 Version 1

 Page 22

(switch button) input has been added. This requires users to make a conscious decision to run
the query. This component shown in Figure 16 returns the voxel index values, voxel nodal
coordinates as Rhinoceros points and a collection of 3D vectors that represent the real-world
colors of the geometry. This functionality related to full-color visualization is described in the
following paragraph. Point geometry returned by this component can also be moved to the
local coordinate system to match the location of other levels contained in the ECOLOPES Voxel
Model. Alternatively, the geometry can be moved to the absolute location in the selected,
standardized geographic coordinate system. Standard Grasshopper components for the
addition of vectors and translation of geometry are used in this example.

Fig. 16: Visual representation of the geometric data retrieved from the ECOLOPES Voxel Model
with the implemented Grasshopper component.

2.5.4 Retrieving color data from the ECOLOPES Voxel Model

To improve the perception of the geometric data contained in the ECOLOPES Voxel Model,
the real-world colors of the objects contained in the ECOLOPES Voxel Model can be retrieved.
Currently the same component is used for retrieving geometry and real-world colors. The
colors are retrieved as a list of 3D vectors and standard GH components are used to construct
the instances of GH colors (“Deconstruct Vector” and “Colour RGB” components). This native
representation of Grasshopper colors can be used with the Grasshopper Preview component
to create the illustration presented in Figure 17.

 Deliverable 5.2 Version 1

 Page 23

Fig. 17: Graphic representation of the geometric data supplemented with real-world colors
retrieved from the ECOLOPES Voxel Model with the implemented Grasshopper component.

2.5.5 Retrieving the list of available data layers from the ECOLOPES Voxel Model

Additional data layers stored in each of the voxel levels need to be retrieved within the
Grasshopper environment. To make this possible, firstly the available data layers need to be
listed. Dedicated components have been required for this functionality, since available data
layers differ between the voxel levels. Moreover, standard properties, such as the geometric
coordinates and the voxel index need to be filtered out before the listing of available data
layers. The component implemented for the retrieval of available data layers requires only the
name of the voxel level as an input. It returns the pre-filtered list of the data layers available
in the ECOLOPES Voxel Model.

Fig. 18: List of available data layers retrieved from the ECOLOPES Voxel Model, presented as a
list in the Grasshopper interface.

 Deliverable 5.2 Version 1

 Page 24

2.5.6 Retrieving a single data layer from the ECOLOPES Voxel Model

Besides retrieving the geometry and color data, each data layer can be retrieved from the
ECOLOPES Voxel Model and manipulated in the GH environment. Standard GH components
can be used to generate false color visualizations which can be interactively viewed in the
Rhinoceros viewport. Components implemented for the retrieval of the data contained in a
single data layer require the name of selected voxel level and data layer, which are returned
by the components described in the previous paragraphs. Voxel index data and the numeric
values of the chosen data layer for each voxel nodal point in the ECOLOPES Voxel Model are
returned by this component. Additionally, the maximum and minimum value of the selected
voxel data layer is provided. Those outputs are prepared to match standard GH components
which allow for false color visualization. GH Gradient component and GH Preview component
were used to create the illustration presented in Figure 19.

Fig. 19: Graphic representation of the selected data layer, presented with false colors in the
Rhinoceros 3D interface. This representation is created using the ECOLOPES Voxel Model
Grasshopper component presented on the right side of this figure.

2.6 Inserting new Geometry into the ECOLOPES Voxel Model

Different approaches for converting Rhinoceros geometry into a grid-based representation
can be utilized to prepare the Rhinoceros geometry to be exported to the ECOLOPES Voxel
Model. Diverse experiments have been executed within the ECOLOPES consortium and the
simplest method is presented in this deliverable, with the aim to showcase the most
reproducible approach.

 Deliverable 5.2 Version 1

 Page 25

2.6.1 Simplified method for exporting Rhinoceros 3D geometry to the ECOLOPES Voxel
Model

For demonstration purposes an exemplary Grasshopper script to export closed solid geometry
from GH to the ECOLOPES Voxel Model was developed. The script presented below does not
require any external Grasshopper plugins and is expected to serve as a starting point for the
further development of new components that will be utilizing the interface with the
ECOLOPES Voxel Model and the EIM Ontology.

Fig. 20. This simple Grasshopper script allows for converting closed Rhinoceros geometries into
a 3D grid-based representation for integration with the ECOLOPES Voxel Model.

The component of the GH script presented in Figure 20 exports the converted GH geometry
to the ECOLOPES Voxel Model. This component requires properly formatted geometry and
the name of the voxel level as inputs. Voxel index values of inserted points and the used voxel
level are returned as outputs.

2.7 Exporting Data from the ECOLOPES Voxel Model
As in the case of loading data into the ECOLOPES Voxel Model, this demonstration describes
the most straightforward method to export a medium-sized dataset from the ECOLOPES Voxel
Model stored in the PostgreSQL database. In this example, the pgAdmin utility described
previously in this deliverable will be used to retrieve the table-based representation of the
data contained in the ECOLOPES Voxel Model. Exported data will be loaded back in QGIS
software to showcase the interoperability of the implemented approach.

2.7.1 Exporting simplified 2.5D geometry from the ECOLOPES Voxel Model

In this example, an exemplary collection of closed geometries modeled in Rhinoceros are
exported into the ECOLOPES Voxel Model using the script presented in the previous section.
The chosen geometry shows that this method can process multiple objects simultaneously
considering 3D features of the geometry, such as undercut surfaces or vertical voids between
individual objects. A preview of this geometry is shown on the left side of Figure 21. As an
outcome, this geometry will be exported to the ECOLOPES Voxel Model and the merged
representation will be exported to a widely used raster format compatible with QGIS. The
exported geometry is marked with a red circle on the right side of Figure 21.

 Deliverable 5.2 Version 1

 Page 26

Fig. 21: Left: Exemplary collection of closed geometries modeled in Rhinoceros 3D. Right: The
same geometry exported in raster format into QGIS.

The query used to retrieve the ECOLOPES Voxel Model data is shown in Figure 22 below. The
presented query returns the data structured according to the standards required by common
GIS software. It allows the user to add the offset between the local coordinate space of the
ECOLOPES Voxel Model and the global coordinate reference system required by the GIS
software. Columns exported from the SQL database are set to "x", "y" and "z", because the
QGIS import function expects the names to match these values. This query utilizes a GROUP
BY functionality preceded by the MAX function. This generates a 2.5D representation of the
3D voxel geometry in which only the topmost point at each pair of the 2D coordinates is
returned. Lastly, to assure that the exported file works, the points need to be sorted first
according to the "x" coordinate in the ascending order and secondly according to the "y''
coordinate in the descending order. This is facilitated by the two ORDER BY clauses and it
results in a row-based data structure with the first point in the raster located in the upper left
corner.

 Deliverable 5.2 Version 1

 Page 27

Fig. 22: Query used to export the ECOLOPES Voxel Model data into the .xyz format supported
by QGIS. Generated file can be easily downloaded from the pgAdmin interface.

2.8 Integrating the ECOLOPES Voxel Model with the EIM Ontology

ECOLOPES Voxel Model and the EIM Ontology are implemented by utilizing different
technologies, because of the different character of the ontological RDF data and the voxel
data represented as SQL tables. Integration between the ECOLOPES Voxel Model and the EIM
Ontology is facilitated by the Ontop Virtualization technology implemented in the GraphDB
environment. This technology allows linking the data contained in the SQL database with the
GraphDG environment. To establish this link, a short .obda file describing the mapping
between the structure and datatypes of the SQL database and the structure and datatypes of
the GraphDB data needs to be prepared. Example of such a file prepared to map a single voxel
level is presented in Figure 23.

 Deliverable 5.2 Version 1

 Page 28

Fig. 23: Exemplary OBDA file that defines the mapping between ECOLOPES Voxel Model and
the EIM Ontology. This file is loaded in the GraphDB environment to enable integration
between the different representations of data utilized by the ECOLOPES Voxel Model and the
EIM Ontology.

GraphDB platform stores data as RDF triples, which is the most common information
representation in ontologies. EIM Ontology is implemented in the GraphDB environment and
the ECOLOPES Voxel Model data is automatically linked with its RDF-based representation in
GraphDB. This allows the execution of typical ontological operations to be executed on the
data linked from the ECOLOPES Voxel Model. Figure 24 shows the basic SPARQL query being
executed in the GraphDB environment which returns ECOLOPES Voxel Model data
represented as triples.

Fig. 24: Example of the SPARQL query which utilizes the OBDA Virtualization technique to
return the triple-based representation of the ECOLOPES Voxel Model data.

 Deliverable 5.2 Version 1

 Page 29

2.8.1 Querying the ontological representation of the ECOLOPES Voxel Model data in
Grasshopper

GraphDB software exposes a SPARQL endpoint allowing execution of standardized queries on
the data stored in the database. In the case of ECOLOPES, this functionality is utilized to query
the EIM Ontology, based both on the RDF data stored within the GraphDB and the virtualized
ECOLOPES Voxel Model data. This functionality has been utilized to implement a direct
interface between the ECOLOPES Voxel Model, EIM Ontology and the Rhinoceros /
Grasshopper environment. An initial prototype of a GH component that allows querying the
GraphDB data has been developed to showcase the possibility of querying the ontological
representation of the ECOLOPES Voxel Model data. This functionality is showcased based on
a simple example. In this simple example, suitable locations for 3 exemplary plant species are
inferred based on the SPARQL reasoning technology and the virtualized ECOLOPES Voxel
Model data. Results of the inference are fed back to the Rhinoceros environment and
visualized using the methods implemented as a part of the ECOLOPES Voxel Model
integration. Figure 25 illustrates this process in which the suitable locations for
aHalfShadyPlant, aShadyPlant and aSunnyPlant are retrieved. This data can now inform the
generative computational design process and be included in a data-package for the
subsequent optimization process (WP6).

Fig. 25: Initial implementation of the Grasshopper component sequence allowing to execute
SPARQL queries on the ECOLOPES Voxel Model data linked with the GraphDB environment.

 Deliverable 5.2 Version 1

 Page 30

3 PUBLICATION PLAN

We recently submitted a scientific article for peer-review to Frontiers of Architectural
Research journal that focuses on the conceptual framework for an ontology-aided generative
computational design process for ecological building envelopes. In the article we describe the
conceptual approach and the development of the related components of the ontology-aided
generative computational design process (EIM Ontologies, ECOLOPES Voxel Model, ECOLOPES
Computational Model). Secondly, we are in the process of preparing a scientific article on the
specific development and utilization of the “ECOLOPES Voxel Model as a spatial-knowledge
representation schemata in the context of an ontology-aided generative computational design
process for ecological building envelopes”. We aim to submit this article to Architectural
Science Review (Taylor & Francis) or to Technology | Architecture + Design (Taylor & Francis).
Finally, we will prepare a scientific article on “Validation of the ECOLOPES ontology-aided
generative computational design process for ecological building envelopes”, which will report
the results of the Vienna Case Study, which will commence in October 2023 and be finalized
in January 2024.

REFERENCES

Conrad, O., B. Bechtel, M. Bock, H. Dietrich, E. Fischer, L. Gerlitz, J. Wehberg, V. Wichmann,
& Böhner, J. (2015). System for Automated Geoscientific Analyses (SAGA) v. 2.1.4.
Geoscientific Model Development, 8(7), 1991–2007. https://doi.org/10.5194/gmd-8-1991-
2015
Open Source Geospatial Foundation Project. “QGIS Geographic Information System,” 2020.
http://qgis.org.
Weisser, W., Hensel, M., Barath, S., Grobman, Y.J., Hauck, T.E., Joschinski, J., Ludwig, F.,
Mimet, A., Perini, K., Roccotiello, E., Schloter, M., Shwartz, A., Sunguroğlu Hensel, D., Vogler,
V. (2022) Creating ecologically sound buildings by integrating ecology, architecture, and
computational design. People & Nature, 5(1), 4-20. https://doi.org/10.1002/pan3.10411

Wilson, J. P., & Gallant, J. C. (Eds.) (2000). Terrain analysis: Principles and applications. Wiley.
SOURCE CODE AND SOFTWARE CITATION
Dragonfly-grasshopper. (2022). [Python]. Ladybug Tools. https://github.com/ladybug-
tools/dragonfly-grasshopper
IronPython. (2023). [Python]. IronLanguages. https://github.com/IronLanguages/ironpython2
(Original work published 2017)
Robert McNeel & Associates. (2021). Ghhops_server: Grasshopper Hops Server (version
1.4.1). https://github.com/mcneel/compute.rhino3d/tree/master/src/ghhops-server-py
Robert McNeel & Associates. (2023). Rhino3dm [C#, Python]. Robert McNeel & Associates.
https://github.com/mcneel/rhino3dm (Original work published 2018).
Rutten, D. (2023). Grasshopper (1.0.007) [C#; Windows]. https://www.grasshopper3d.com/
SQLAlchemy. (2023). [Python]. SQLAlchemy. https://github.com/sqlalchemy/sqlalchemy

https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.5194/gmd-8-1991-2015
https://doi.org/10.1002/pan3.10411
https://doi.org/10.1002/pan3.10411
https://github.com/ladybug-tools/dragonfly-grasshopper
https://github.com/ladybug-tools/dragonfly-grasshopper
https://github.com/mcneel/compute.rhino3d/tree/master/src/ghhops-server-py
https://github.com/mcneel/rhino3dm
https://github.com/sqlalchemy/sqlalchemy

