

 Page 1

ECOLOPES
ECOlogical building enveLOPES: a game-changing design approach for

regenerative urban ecosystems

H2020-FET-OPEN-2021-2025

Action number 964414

D5.4

ECOLOPES Computational Model

Dissemination level: Public

Contractual date of delivery: Month 30, 30 September 2023

Actual date of delivery: 27 September 2023

Work package: WP5

Task: T5.2

Type: Report

Approval Status: Submitted

Version: v0.2

Number of pages: 81 (excluding Appendix 3)

Filename: D5.4_Ecolopes_ECOLOPESComputationalModel_20230927_v0.2.pdf

Abstract

This deliverable describes the development of the ECOLOPES Computational Model for the ontology-aided

generative computational design process, which comprises the translational and the generative process. The

translational process involves preparation of datasets that serve as input for the generative process. The generative

process involves generating (1) design output concerning spatial organisation and (2) geometric articulation for each

design output. Stage 1 of the deliverable focuses on the development of an Answer Set Programming (ASP) approach

for the generative process. Stage 2 comprises preparation for utilising additional classes of algorithms (e.g., ASP

approach for the translational process and extending the generative process with a Genetic Algorithm and a Machine

 Page 2

Learning algorithm. While stage 2 will not reach the required TRL it will set out a clear path for future development

of the ontology-aided generative computational design process.

Furthermore, this deliverable describes the approach to the validation of the ontology-aided generative

computational design process. This includes technical functionality of (1) the key components of the ontology-aided

generative computational design process, the ECOLOPES Information Model (EIM) Ontology (D4.2 Interim EIM
Ontology), the ECOLOPES Voxel Model (D5.3 ECOLOPES Voxel Model) and the ECOLOPES Computational

Model, as well as (2) their various interactions. Secondly, this includes validation of the soundness of the design

output of the various stages of the design process. The Vienna Case Study outlined in this deliverable is currently in

preparation and will serve this purpose. Finally, given the aim of the ECOLOPES research project to develop a design

approach and computational design workflow for use in architectural practice, it is necessary to validate the

robustness and usefulness of the approach in a simulated practice context. We operate on the understanding that

given a reasonably compact amount of training, an architect with a first degree (BA) in architecture should be able

to utilise the conceptual, methodological, and computational aspects of the ontology-aided generative computational

design process. For this reason, we use master-level design studios and master thesis projects at TU Wien as testbeds

for this purpose. This serves to (1) establish the training that is necessary to enable master-level students to work

with the Ecolopes approach, and (2) evaluate design outcomes of Ecolopes projects undertaken by the students.

The information in this document reflects only the author’s views and the European Community is not liable for any use that may be made of

the information contained therein. The information in this document is provided as is and no guarantee or warranty is given that the

information is fit for any particular purpose. The user thereof uses the information at its sole risk and liability.

co-funded by the European Union

HISTORY

Version Date Reason Revised by

v0.1 05/09/2023 Draft Internal Review Surayyn Uthaya Selvan

 07/09/2023 Draft Internal Review Gabriele Oneto

 08/09/2023 Draft Internal Review Katia Perini

 10/09/2023 Draft Internal Review Shany Barath

 11/09/2023 Draft Internal Review Thomas Hauck

 11/09/2023 Draft Internal Review Yasha Grobman

V0.2 25/09/2023 Preparation of Version 2 Michael Hensel

AUTHOR LIST

Organization Name Contact Information

TU Wien Michael Hensel michael.hensel@tuwien.ac.at

TU Wien Albin Ahmeti aljbin.ahmeti@tuwien.ac.at

 Deliverable 5.4 Version 2

 Page 3

TU Wien Jakub Tyc jakub.tyc@tuwien.ac.at

TU Wien Akif Cifci akif.cifci@tuwien.ac.at

TUM Defne Sunguroğlu Hensel defne.hensel@tum.de

EXECUTIVE SUMMARY

This deliverable describes the development of the ECOLOPES Computational Model, a key
component of the ontology-aided generative computational design process, together with the
EIM Ontologies (D4.2 Interim EIM Ontologies) and the ECOLOPES Voxel Model (D5.3
ECOLOPES Voxel Model).

The “ontology-aided generative computational design process” comprises the translational
and the generative process. The translational process involves preparation of datasets (Loop
1) that serve as input for the generative process. The generative process involves generating
design output concerning spatial organisation (Loop 2) and generating geometric articulation
(Loop 3). We recognise that the ontology-aided generative computational design process
would benefit considerably from a combination of different classes of algorithms with
different functionalities. However, purpose-configuring different classes of algorithms with
different functionalities and ensuring proper functionality and interoperability is a complex
undertaking that exceeds what is possible in the ECOLOPES research project. To address this
challenge, we pursue a two-stage development.

For the development of the ECOLOPES Computational Model we focus on the development
of an Answer Set Programming (ASP) approach for the generative process (Loop 2 and Loop
3). Lifschitz explained that “the idea of answer set programming is to represent a given
computational problem by a logic program whose answer sets correspond to solutions, and
then use an answer set solver … to find an answer set for this program” (Lifschitz, 2002).
Mueller elaborated further that “answer set programming is an approach to knowledge
representation and reasoning. Knowledge is represented as answer set programs, and
reasoning is performed by answer set solvers.” (Mueller, 2015) The ASP solution for the
generative process (Loop 2 and Loop 3) will be technically implemented by the end of the
project at the required Technology Readiness Level (TRL). Furthermore, we outline additional
classes of algorithms for advancing the ontology-aided generative computational design
process. This involves conceptualising an ASP approach for the translational process (Loop 1)
and a conceptual outline for extending the generative process (Loop 2 and Loop 3) with a
Genetic Algorithm (GA) and a Machine Learning (ML) algorithm. These additions will not reach
full technical implementation, i.e., the required TRL, yet set out a clear path for future
development of the ontology-aided generative computational design process.

In Section 1 the role of the ECOLOPES Computational Model in the ontology-aided generative
computational design process is elaborated.

In Section 2 we describe the selected algorithmic processes in relation to the two processes
that together make up the ontology-aided generative computational design process: (1) the
translational process and (2) the generative process (D 5.1 Development Process for ECOLOPES
Algorithms).

https://docs.google.com/document/d/13Gt5SHco7rWhg4DKYhzcj7iQ7b-QPRnMLwe4XK_InsA/edit#heading=h.jhf60ge42wp7

 Deliverable 5.4 Version 2

 Page 4

Section 2.1 describes the task in Loop 1. In the translational process requirements elaborated
in the design brief for a given project and site and additional requirements are analysed,
correlated, spatialised and prepared for design generation (Loop 1). Stage 1 of the
development of this deliverable does not include an implementation of an additional
algorithmic process. We develop for stage 2 a conceptual extension of the initial approach
with an ASP algorithm, the purpose of which is to convert design-related information into
structured datasets for the translational process in Loop 1. ASP is useful for knowledge
representation and reasoning tasks, enabling designers to make well-informed choices, and
facilitating the conversion of design requirements and constraints into computationally
interpretable data.

Section 2.2 describes the task in Loop 2, the selected algorithm(s), and the related interfaces
with the EIM Ontology and ECOLOPES Voxel Model. Stage 1 of the development of this
deliverable includes the technical development of an ASP algorithm. ASP is useful for
knowledge representation and reasoning tasks, enabling designers to make well-informed
choices, and facilitating the conversion of design requirements and constraints into
computationally interpretable data. Furthermore, we describe for stage 2 a conceptual
extension of the initial approach with a GA and a ML (K-means) algorithm to enhance the
capacity to generate variations of spatial organisation for the task of architectural, biomass,
and soil volume distribution (see Appendices 1 and 2).

Section 2.3 describes the task in Loop 3, the selected algorithm(s), and the related interfaces
with the EIM Ontology and ECOLOPES Voxel Model. Stage 1 of the development of this
deliverable includes only an ASP algorithm. Furthermore, we describe for stage 2 an extension
of the approach with a GA and a ML (K-means) algorithm to enhance the capacity to generate
variations of geometric articulation (dataset landform) for the task deriving a coherent
geometry for buildings and sites that can be understood and evaluated in terms of terrain
features and hence in terms of geodiversity.

Section 3 outlines the validation of the ECOLOPES Computational Model in the context of the
ontology-aided generative computational design process. Overall, we address four aspects of
validation: (1) technical validation of the key components of the ontology-aided generative
computational design process: EIM Ontology (D4.2 Interim EIM Ontology), ECOLOPES Voxel
Model (D5.3 ECOLOPES Voxel Model) and ECOLOPES Computational Model (D5.4 ECOLOPES
Computational Model), (2) technical validation of component interaction, (3) validation of
soundness of design output based on the Vienna Case Study, and (4) robustness of the
approach for use in practice.

Section 4 outlines the intended further development of the algorithms that make up the
ECOLOPES Computational Model, including the intended development stage at the end of the
project, taking into consideration the required TRL and addressing FAIR principles.

Section 5 includes the current publication plan.

https://docs.google.com/document/d/13Gt5SHco7rWhg4DKYhzcj7iQ7b-QPRnMLwe4XK_InsA/edit#heading=h.b4m8dvuh509f

 Deliverable 5.4 Version 2

 Page 5

ABBREVIATIONS AND ACRONYMS

ASP Answer set programming

CAD Computer Aided Design

EA Evolutionary Algorithm

EIM Ecolopes Information Model

EN Ecological Network

GA Genetic Algorithm

GCD Generative Computational Design

GDB Graph Database

GH Grasshopper

JSON JavaScript Object Notation

KG Knowledge Graph

KGF Knowledge Generation Framework

KPI Key Performance Indicator

ML Machine Learning

OWL Web Ontology Language

RDB Relational Database

RDF Resource Description Framework

SQL Structured Query Language

TRL Technology Readiness Level

UI User Interface

 Deliverable 5.4 Version 2

 Page 6

UX User Experience

UN User Network

WP Work-package

TABLE OF CONTENTS

History 2

Author list 2

Executive Summary 3

Abbreviations and Acronyms 5

Table of Contents 6

1 Introduction: The Role of the Ecolopes Computational Model in the Ontology-aided Generative
Computational Design Process 7

2 Algorithmic Processes in the Ontology-aided Generative Design Process 13

2.1. Algorithms for the Translational Process: Loop 1 17

2.1.1 The Task 17

2.1.2 Selected Types of Algorithms and related Workflow 19

2.1.3 Interfaces with EIM Ontology 1 and ECOLOPES Voxel Model 20

2.2. Algorithms for the Generative Process: Loop 2 23

2.2.1 The Task 23

2.2.2 Selected Types of Algorithms and related Workflow 24

2.2.3 Interfaces with EIM Ontology 2 and ECOLOPES Voxel Model 25

2.3. Algorithms for the Generative Process: Loop 3 26

2.3.1 The Task 26

2.3.2 Selected Types of Algorithms and related Workflow 27

2.3.3 Interfaces with EIM Ontology 2 and ECOLOPES Voxel Model 28

3 Validation 28

3.1 Validation of the Components of the Ontology-aided Generative Computational Design Process
 30

3.1.1. Validation of the EIM Ontologies 30

3.1.2. Validation of the ECOLOPES Voxel Model 32

3.1.3 Validation of the ECOLOPES Computational Model 36

3.2. Validation of the Interaction between the Components 37

3.2.1. EIM Ontology and ECOLOPES Voxel Model 37

3.2.2. EIM Ontology and ECOLOPES Computational Model 38

3.2.3. ECOLOPES Voxel Model and ECOLOPES Computational Model 39

 Deliverable 5.4 Version 2

 Page 7

3.3. Validation of the Design Output: The Vienna Case Study 39

3.4. Validation of the Robustness of the Approach for Architectural Practice 44

4 Further Development Steps 53

4.1. Open Questions and Next Steps 53

4.2. Intended Development Stage at the End of the Project 55

4.3. Technology Readiness Level 55

4.4. Adherence to FAIR Principles 56

5 Publication Plan 56

References 57

Appendix 1: Initial Generative Algorithm Code 59

Appendix 2: ML Code 68

Appendix 3: Book on the ECOLOPES Master Thesis by Livia Dirnböck

1 INTRODUCTION: THE ROLE OF THE ECOLOPES COMPUTATIONAL

MODEL IN THE ONTOLOGY-AIDED GENERATIVE COMPUTATIONAL

DESIGN PROCESS

The ECOLOPES computational framework, its technical components, and data flow between
the latter (computational workflow) was elaborated in WP3 and the updated version
presented in D3.3. (M29) (Fig. 1).

The ECOLOPES Computational Framework facilitates informed multi species design for
ecological building envelopes, that we term ecolopes (Fig. 1) (D3.3, Weisser et al. 2022). It
includes technical components such as the Ecological Model, the Knowledge Base, the design
generation environment, which we term “ontology-aided generative computational design
process”, the Optimization Environment (D6.1), and components for validation. The Ecological
Model, developed in WP4 (D4.1, D1.5), simulates plant, animal and soil dynamics. The
Ecological Model was integrated in a 3D CAD system (Rhino/ Grasshopper) (D3.3 Chapter 3),
which facilitated the generation of relational data (architecture, environmental, and ecology)
for building envelopes in a resolution of 1 cubic metre. In the next step, this data was stored
in the Knowledge Base (D3.3. Chapter 4). The KB was then analysed using a ML model which
extracts rules for decision making for WP5 (D3.3, Chapter 4). The design generation
environment (ontology-aided generative computational design process), which is developed
in WP5 (D5.2 ECOLOPES Voxel Model and D5.3 ECOLOPES Computational Model) facilitates
design generation and the generation of design search space populated with alternative
solutions that can be analysed, evaluated, and ranked. The optimization environment, which
is developed in WP6 aims to facilitate optimization based on the search space produced by
the ontology-aided generative computational design process (WP5) and selection of the final
ecolope design solution based on KPIs (D6.1). The ECOLOPES Computational Model provides
input for optimization, the output of which provides the basis for the overall validation (WP7)

 Deliverable 5.4 Version 2

 Page 8

of the ECOLOPES Computational Framework.

During development it became clear that the Ecological Model output is far too complex for
integration into the design generation algorithms, and that the development of a
comprehensive EIM ontology takes time. It was therefore decided to pursue parallel
workflows: One workflow focuses on the development of the ontology-aided generative
computational design process and the EIM Ontologies (TU Vienna), while the second workflow
uses the Knowledge Generation Framework (KGF, D3.3) to provide correlational (ecology-
architecture) information for design decision support (MCNEEL, TUM, SAAD). The KB is the
joint interface of the two workflows.

Fig. 1: Ecolopes computational framework showing integrated (black frame) and non-
integrated technical components (yellow frame) (D3.3). The figure shows where the ontology-
aided generative computational design is located within the Ecolopes computational framework.

This deliverable focuses on the development of the ECOLOPES Computational Model
consisting of and facilitated by algorithmic processes that are conceptualised and tailored for
the ontology-aided generative computational design process, with the aim to facilitate
specified CAD Model output as described below. The design generation environment is
conceived as an ontology-aided generative computational design workflow comprises three
key components: (1) the EIM Ontologies (D4.2) that guide the design process in its different
stages and can be queried by the designer, (2) the ECOLOPES Voxel Model (D5.3) that
integrates relevant datasets for the design process, and (3) the ECOLOPES Computational
Model in the Rhinoceros CAD environment in which selected algorithmic processes are
implemented that are linked with and guided by the EIM Ontologies.

The ECOLOPES Computational Model is located between the EIM Ontology and the
optimization environment. From an information flow perspective, this can be represented in
the following way, although feedback, interactions, and interfaces alter this simplified
schema:

 Deliverable 5.4 Version 2

 Page 9

→ Ecological Model → EIM Ontology → ECOLOPES Computational Model → optimization
environment →

Two distinct processes are combined to make up the ontology-aided generative
computational design process: (1) the Translational Process and (2) the Generative Process
(D5.1 Development Process for ECOLOPES Algorithms).

In the Translational Process, requirements elaborated in the design brief for a given project
and site and additional requirements are analysed, correlated, spatialised and prepared for
design generation. In the generative process, variants of spatial organisation and geometric
articulation for the different design outputs are generated. This entails numerous design
outputs that can be evaluated and ranked. The ontology-aided generative computational
design process consists of three loops (Tab. 1, Fig. 2).

Loop 1 comprises the development of EIM Ontology 1 (knowledge graph) that aids the
Translational Process. This entails preparing the datasets that are key inputs into the design
generation process via a knowledge graph that can be queried by the designer.

Loop 2 comprises the development of EIM ontology 2 that aids the generation of the spatial
organisation utilising generic (cuboid) volumes (dataset volumes) for each case-specific design
output.

Loop 3 comprises the development of EIM ontology 3 to aid the generation of the geometric
articulation (dataset landform) for each case-specific design output. Loops 2 and 3 will be
facilitated by an Answer Set Programming (ASP) approach.

This deliverable is characterised by a two-stage approach. Stage 1 describes the level that will
be technically implemented at the end of the project. Stage 1 entails implementation of an
ASP approach for the generative process including Loop 2 and Loop 3. Stage 2 comprises a
conceptual development for future advancement of the ontology-aided generative design
process. This entails conceptual development of an ASP approach for Loop 1 and a conceptual
outline for extending Loop 2 and Loop 3 with a Genetic Algorithm (GA) and a Machine Learning
(ML) algorithm. Stage 2 will not reach the required Technology Readiness Level (TRL) yet sets
out a clear path for future advancement of the ontology-aided generative computational
design process.

 Deliverable 5.4 Version 2

 Page 10

Table 1: Overview of the three key stages and involved components of the generative computational design
process, including purpose of each stage, as well as involved datasets, inputs and outputs, involved
computational components and degree of designer involvement in each stage.

Ontology-
aided
generative
comp. design
process

Purpose Datasets Inputs Outputs Involved
Comp.
Components

Designer
involvement

Loop 1
Translational
Process

Translation of
design brief
and designer
defined
requirements
into inputs for
the generative
process

Datasets maps
and networks,
(Open)
Knowledge
Graphs

Design Brief,
Designer
Inputs,
etc.

Datasets maps
and networks
in CAD
environment

EIM Ontology
1,
Voxel Model,
Ecological
Model,
CAD 1
algorithms,
GraphDB
querying and
reasoning

high

Loop 2
Generative
Process 1

Computational
generation of
spatial
organisation

Volumes Constraints,
Maps,
Networks,
etc

Volume
distribution in
CAD
environment
Voxel data
Ontological
output

Volume
distribution in
CAD
environment
Voxel data
Ontological
output
ASP

variable

Loop 3
Generative
Process 2

Computational
generation of
geometric
articulation

Landform Constraints,
Maps,
Networks,
Volumes,
etc

Site and
building
geometry in
CAD
environment,
Voxel data
Ontological
output

Site and
building
geometry in
CAD
environment,
Voxel data
Ontological
output, KGF,
ASP

variable

 Deliverable 5.4 Version 2

 Page 11

Fig. 2: Ontology-aided generative design process for ECOLOPES showing the system
architecture with its main components and interfaces. This includes the three process loops
(Loop (1, 2, 3)) with the main interfaces (in red) and allocated methods (in blue) mapped along
the three design stages (Translational Process, Generative Process 1, Generative Process 2) (x-
axis); and the main components (EIM Ontologies, Rule-Based System, CAD models) of each
loop (y-axis).

The output of the ontology-aided generative design process consists for each generated
design variant of (1) CAD Model output, (2) related data in the ECOLOPES Voxel Model, and
(3) ontological output. The CAD Model output comprises (1) spatial organisation (dataset
volumes) (D5.1 Development Process for ECOLOPES Algorithm), and (2) geometric articulation
of selected variants of volume distribution (dataset landform) (D5.1 Development Process for
ECOLOPES Algorithm). Spatial organisation entails the distribution of different types of generic
(cuboid) volumes. Geometric articulation entails the articulation of specific landform
geometry for selected spatial organisation output, according to specified requirements
contained in the various inputs into the process including project brief and determinations
made by the designer.

To define spatial organisation, we initially conceptualised three types of volumes: (1)
architectural volumes, (2) biomass volumes, and (3) soil volumes (D5.1 Development Process
for ECOLOPES Algorithm). Together these three types of volumes constitute the spatial
organisation of an ecolope and depending on the design case also of the entire plot or

 Deliverable 5.4 Version 2

 Page 12

extended site (D5.1 Development Process for ECOLOPES Algorithm). During further
development steps it showed that in future more diverse types of volumes may be beneficial.
Currently we consider distinguishing between different types of green volumes, e.g., dense
biomass and sparse biomass (for instance as corridors for movement of animal species).
Furthermore, it is useful to distinguish in future steps between different types of architectural
volumes, e.g., fully enclosed spaces and transitional spaces, and to assign further attributes,
e.g., including openings in volumes that connect exterior and interior spaces.

For geometric articulation, we developed an approach to what we term urban landform (D5.1
Development Process for ECOLOPES Algorithm). The latter is based on specified types of
terrain features with the aim to instrumentalise recent research on the correlation between
geodiversity, microclimate variation (Vernham et al., 2023), biodiversity (Brazier et al., 2012;
Tukiainen et al., 2019, 2022) and ecosystem services (Alahuhta et al., 2018) (D5.1
Development Process for ECOLOPES Algorithm). For this purpose, we initially selected the
geomorphons approach, a pattern-recognition based approach to classify and map landforms
(Jasiewicz & Stepinski, 2013) (D5.1 Development Process for ECOLOPES Algorithm).
Geomorphons are organised as a library of terrain features (e.g., flat, valley, shoulder, ridge,
etc) and are based on a 2.5D definition of the terrain surface. However, we seek to modify this
approach to enable the design of a continuous landform geometry, while at the same time
deriving a systemic approach to terrain features for the purpose of design. We realised that it
is disadvantageous to initially consider terrain features as a set of components or tiles, since
the edges of neighbouring geomorphons may not align and therefore not result in a
continuous surface, at least not without significant modification of tiles, thereby leading to
geometries that are not the intended ones and hence to suboptimal results. We are currently
revising our approach, basing it on the process of actual landscape analysis with
geomorphons. In other words, existing continuous surfaces are rationalised through
geomorphons. For our purpose the process of geometric articulation will proceed from the
horizontal and vertical surfaces of the generic (cuboid) volumes distributed in Loop 2, as well
as the surface geometry of the site. These form a continuous surface that is iteratively
modified to result in coherent urban landform characterised by geodiversity.

To reflect the types of projects occurring in architectural practice, the ontology-aided
generative computational design process will facilitate two distinct design cases (D5.1
Development Process for ECOLOPES Algorithm, D5.4 ECOLOPES Computational Model
Validation).

Design Case 1 entails the design of a master plan for the development of a given site. In such
cases the number and distribution of building volumes, including footprint, floor area ratio,
maximum volume, and maximum height, are not yet defined. In the context of this research
this entails that spatial organisation is generated through the distribution of architectural,
biomass and soil volumes, which we term for case 1 primary volumes, as well as geometric
articulation of site and buildings leading to what we term for case 1 primary landform.
Landform can therefore be coherently designed across the entire site, with all volumes
adhering closely to the landform scheme.

Design Case 2 entails the design of an individual building for which all constraints, such as
footprint, floor area ratio, maximum volume, and maximum height, etc. are already

 Deliverable 5.4 Version 2

 Page 13

established by a municipal master plan. Since the generic maximum allowed primary volume
is already given by the masterplan, the task is to partition the primary volume into secondary
and tertiary architectural, biomass and soil volumes. To enable different species to inhabit the
envelope it is useful to develop the building geometry as a secondary and tertiary landform
(hierarchical nesting of terrain features) to enable accessibility and appropriate provisions for
specified species to specified parts of the building envelope.

Case 2 relates to the same scale generic building scale design case in D6.1 which runs the
Optimization Process on an ecological building envelope that can be replaced with a specific
design case generated by the ontology-aided generative computational design process.

Primary volumes define the location of buildings, and overall biomass and soil volumes. Once
primary volumes are located it is possible to detail them further by locating secondary and
tertiary volumes, which entail more specific architectural, green and soil volumes. Since the
purpose of geometric articulation is to shift from generic (cuboid) geometry to urban landform
with distinct terrain features, a matching hierarchical order is established. Primary landform
delivers a first overall level of geometric articulation to primary volumes, especially for
architectural and soil volumes. Secondary and tertiary landforms are subsequently generated
to derive more detailed geometric articulation and geodiversity to enhance the possibility of
meeting diverse ecological and architectural requirements.

2 ALGORITHMIC PROCESSES IN THE ONTOLOGY-AIDED GENERATIVE

DESIGN PROCESS

This deliverable is characterised by a two-stage approach. Stage 1 describes the level that will
be technically implemented at the end of the project. For Loop 2 and Loop 3 this entails the
development of an Answer Set Programming (ASP) process. ASP is useful for knowledge
representation and reasoning tasks, enabling designers to make well-informed choices, and
facilitating the conversion of design requirements and constraints into computationally
interpretable data. Stage 2 comprises a conceptual development for future advancement of
the ontology-aided generative design process. This entails utilising an ASP algorithm for Loop
1 and a conceptual outline for extending Loop 2 and Loop 3 with a Genetic (GA) and a Machine
Learning (ML) (K-means) algorithms. Stage 2 will not reach full technical resolution and
implementation, because of computational / technical bottlenecks that require additional
time for development.

The different algorithms that are technically or conceptually developed for the ontology-aided
generative computational design process have different roles and related functionalities.
These are related to the stages of facilitating the translational process, and the generative
process for deriving spatial organisation variations (dataset volumes), and geometric
articulation (dataset landform). In the following subsections we describe the tasks, the
selected algorithms and workflows, and the related interfaces with the EIM Ontologies and
the ECOLOPES Voxel Model for Loop 1, Loop 2, and Loop 3.

 Deliverable 5.4 Version 2

 Page 14

Fig. 3: The workflow describing the designer input and the interaction with the respective
algorithms in different loops via GraphDB, and ASP constraints and rules.

Figure 3 displays the process steps starting from Loop 1 and ending with Loop 3. This involves
the following:

1. Integration of Databases: The ECOLOPES Voxel Model incorporates different types of
relational databases (RDBs) such as SQLite, and PostgreSQL. These databases are
prototyped and tested to store and manage the voxel model data. The SQLAlchemy
Python library is used to provide an SQL dialect agnostic solution for integrating the
RDBs with the digital design process implemented in the Rhino 3D software.

2. Open-Source GIS Software: Open-source GIS processing software toolkits like QGIS and
SAGA GIS are employed to generate geospatial analysis datasets. These datasets,
representing environmental conditions such as solar exposure, topographic wetness,
or wind exposure, can be converted into a voxel-based representation compatible with
the ECOLOPES Voxel Model (D5.3 ECOLOPES Voxel Model).

 Deliverable 5.4 Version 2

 Page 15

3. Interaction with GraphDB: The ECOLOPES Voxel Model is integrated with GraphDB, a
software solution that enables virtualization of data and integration with the EIM
Ontology. The Ontop Virtualization technology, integrated into GraphDB, facilitates
the interaction between the Voxel Model and the EIM Ontology. An OBDA/R2RML file
defines the mapping between the RDB and the Knowledge Graph data structure,
enabling the representation of voxel model data in an ontology-based format using
RDF triples.

4. Coordinate Space Alignment: To ensure site-specific design proposals, the Voxel
Model's coordinate space is aligned with the site boundaries and rotation. This
alignment allows for accurate querying and utilisation of voxel model data within the
generative computational design process. SQL functions and matrix operations are
implemented within the RDB to transform large-scale voxel data into site-scale
coordinate system space.

5. Designer Interactions: Architects and designers can interact with the ECOLOPES Voxel
Model through the dedicated Grasshopper interface, which provides a visual
programming environment within the Rhino 3D software. The Grasshopper interface
allows designers to construct networks, validate network structures using GraphDB
reasoning functionality, and explore voxel model datasets interactively.

6. Answer Set Programming (ASP): ASP is used as a declarative programming paradigm
to represent and solve combinatorial problems within the ECOLOPES Voxel Model. ASP
allows for logical reasoning and constraint satisfaction, enabling the model to generate
design solutions that satisfy specified criteria and constraints.

7. Generative Process: The Voxel Model data, combined with ASP, is utilised in the
generative computational design process. Designers can distribute volumes on the
chosen site, with each volume assigned a predefined class. The ECOLOPES design
process, powered by ASP, is executed based on the distributed volumes, and the Voxel
Model data can be accessed through the GraphDB Ontop Virtualization interface.

8. Exporting Voxel Data: At the end of the generative process, the voxel-based
representation of the geometry, along with the CAD-based representation, is saved for
the Optimization Process as described in D6.1 Section 4.2. The voxel-based data is
exported as a single SQLite database file containing multi-resolution data representing
the results of the design process.

 Deliverable 5.4 Version 2

 Page 16

Fig. 4: Overview of the selected levels contained in the ECOLOPES Voxel Model and their
relation to the computational procedures implemented in the three loops of the GCD process.
Outcomes of each loop can be merged with the input data and written to a separate table
(e.g., vox_lvl30_09_upd). This updated voxel-based representation can be merged with the
large-scale data (vox_lvl40) and visualised in Rhinoceros. (D5.3 ECOLOPES Voxel Model)

 Deliverable 5.4 Version 2

 Page 17

2.1 Algorithms for the Translational Process: Loop 1

2.1.1 The Task

The first design stage is the translational process. It serves to set out the project-specific
problem space for design. Requirements given by the design brief for a given project and site,
and additional requirements are analysed, correlated, spatialised, and prepared. The
translational process involves specific datasets prepared by the designer that serve as inputs
into the design generation process via a knowledge graph that can be queried by the designer.
This involves the preparation of datasets referred to as maps and networks (D 5.1
Development Process for ECOLOPES Algorithms, D4.2 Interim EIM Ontology). The dataset
networks entails designer input in the form of User Networks (D4.2 Interim EIM Ontology) for
initialising Loop 1. EIM Ontology 1 will aid the configuration of Networks (Ns) in the 3D CAD
model and guide the generation of spatial organisation (dataset volumes) in Loop 2 and
geometric articulation (dataset landform) in Loop 3 (D4.2 Interim EIM Ontology). In this
context, algorithms are required that support analysis, correlation, spatialization, and
preparation of the datasets that underlie the design generation process. This involves (1)
enabling the designer to query and reason with EIM Ontology 1, (2) generating multiple design
variations, and (3) facilitating data analysis.

Fig. 5: Dataset maps: datasets contained in the ECOLOPES Voxel Model include geometric
and classification data. This includes environmental performance data such as, for instance,
topographic wetness index, as well as time series data, such as, for instance, insolation time
and wind exposure. (D5.3 ECOLOPES Voxel Model)

 Deliverable 5.4 Version 2

 Page 18

Fig 6: Illustration of designer configured networks for three different use cases. (D4.2 Interim
EIM Ontology)

2.1.2 Selected Types of Algorithms and related Workflow

Loop 1 encompasses the translational process in ontology-aided generative computational
design. Section 2.1 describes the task in Loop 1.

Stage 1 does not include additional algorithms for Loop 1, since this process can be facilitated
without it. In stage 2 we outline extending Loop 1 in future with ASP, which will not be
developed to the full required TRL. The ASP algorithm outlined in stage 2 will serve the
purpose to convert design-related information into structured datasets for the translational
process in Loop 1. ASP is useful for knowledge representation and reasoning tasks, enabling
designers to make well-informed choices, and facilitating the conversion of design
requirements and constraints into computationally interpretable data.

The stage 1 development entails that Loop 1 leverages GraphDB's SPARQL query endpoint to
query and reason with the varied requirements and constraints (Fig. 7). This includes a
combined query federation of different datasets, e.g., involving solar exposure and plants,
returning a set of results that satisfy the conditions. For the cases where we don't need a

 Deliverable 5.4 Version 2

 Page 19

recursive way of checking against the constraints in ASP using a set of rules that affect one-
another, we solve such cases with GraphDB alone via SPARQL queries.

Fig. 7: Left: Screenshot of the GraphDB interface, showing how data contained in the
ECOLOPES Voxel Model can be queried and represented in an ontology-based format (RDF
triples) Right: Data saved in the RDB-based voxel model can be virtualized in GraphDB, by
defining the mapping between the RDB and GDB data structure in an OBDA / R2RML file.

Stage 2 entails the conceptual development of an ASP algorithm, a declarative programming
paradigm that enables logical reasoning and rule-based querying of EIM Ontology 1. ASP will
enable the designer to query and reason with EIM Ontology 1 (knowledge graph) during the
translational process. ASP enables designers to extract valuable insights and uncover
relationships among different elements within the design problem space. ASP offers a logical
framework for specifying constraints, rules, and conditions. In contrast to GraphDB, ASP can
do reasoning with multiple constraints in a declarative way. Those constraints can be both
local (e.g., provided by the user as a step in the translation process) and global (e.g., site
requirements). In Loop 2 they can be generic rules of volume distribution based on soil,
biomass, and architecture. ASP can augment and reason with both local and global constraints
when returning an answer to the user that satisfies those. It might be that a constraint and a
rule can have a 'chain effect' that it interacts with another one, e.g., addition or removal of a
fact by a rule triggers another one. While GraphDB offers different OWL fragments to do
reasoning with rules and constraints, it is not as flexible as ASP in defining the rules and
constraints and providing explainable answers. Also, by using only SPARQL queries in GraphDB
it is not feasible to capture different kinds of constraints, given that we do not need to specify
such rules every time in the query, but instead we specify and store them as constraints that
hold as 'global' constraints.

ASP can enable efficient and precise querying of EIM Ontology 1, facilitating the extraction of
relevant data for subsequent design stages. The problem formulation stage involves defining
the design context and objectives, as well as identifying the specific data requirements for the
generative design process. With this foundation in place, design knowledge is encoded using
logical rules and constraints within the ASP framework. This involves formalising concepts,
relationships, and attributes relevant to the design problem, and encoding domain-specific
rules and constraints that capture design considerations, preferences, and requirements. The
next step involves query generation, where ASP rules and queries are developed to retrieve

 Deliverable 5.4 Version 2

 Page 20

targeted data from EIM Ontology 1. Logical queries are constructed based on the defined
design objectives and constraints, specifying the desired attributes and relationships to be
retrieved. The formulated queries are then executed using an ASP solver, which employs
reasoning capabilities to identify answer sets that satisfy the defined constraints and rules.
From these answer sets, relevant data representing design elements, parameters, and
contextual information is extracted. Following data retrieval, the extracted data undergoes
filtering and refinement processes. This entails analysing and filtering out irrelevant or
redundant information, as well as applying data refinement techniques such as cleaning and
normalisation to ensure data consistency and reliability. The retrieved data is further validated
against predefined constraints and quality criteria to maintain data integrity. Lastly, the
retrieved data is transformed into a suitable representation for subsequent algorithmic
processes. This transformation involves converting the data into a structured format, such as
matrices or graphs, which facilitates efficient analysis and manipulation. This prepares the
data for further stages in the generative design process.

To implement the ASP algorithm in Loop 1 it is useful for establishing a programming
environment that supports logical reasoning capabilities. The formal representation of EIM
Ontology 1, including concepts, relationships, and attributes, are defined using appropriate
notations and frameworks. ASP rules and constraints can then be developed to encode the
design knowledge and constraints specific to the design problem. The implementation would
also necessitate constructing the query generation module, executing the queries using an
ASP solver, and applying data filtering, refinement, and transformation techniques. It will be
important to validate the implemented Algorithm 1 by executing test cases and comparing
the results with expected outcomes to ensure the correctness and efficiency of the data
retrieval and preparation process.

2.1.3 Interfaces with EIM Ontology 1 and ECOLOPES Voxel Model

The interface with EIM Ontology 1 in the ECOLOPES Computational Framework provides
designers with the means to interact with the Knowledge Graph and access the design-related
information contained within it. The use of EIM Ontologies plays a significant role in guiding
the generative computational design process for designing ecological building envelopes. EIM
Ontology 1 contains information about urban design principles, regulations, and constraints
in Vienna, such as building heights, setback requirements, green spaces, and transportation
infrastructure. Designers can access EIM Ontology 1 to retrieve relevant data and ensure
compliance with the specific urban design guidelines of Vienna. For instance, a query in
GraphDB can retrieve all plants that satisfy the sunlight exposure retained in voxel model - for
further details and the SPARQL query refer to Fig. 21 in deliverable D.4.2. Such queries rely on
join conditions, i.e., basic graph patterns in SPARQL, between data residing in different graphs
or repositories, which are further expanded with FILTER queries to specify conditions.

 Deliverable 5.4 Version 2

 Page 21

Fig. 8: Loop 1 in the generative design process enables combination of Dataset Networks,
Dataset Maps, and data contained in the expert databases into 3D CAD based representation.
Designer provides input by configuring User Networks in the McNeel Rhinoceros 3D interface.
Dataset Networks consists of User Networks and Ecological Networks interactively queried
from GraphDB, while the Dataset Maps is created by interactively querying the ECOLOPES
Voxel Model.

The ECOLOPES Voxel Model integrates various datasets that are required or desired for the
design process. By incorporating geospatial data such as topography, land use patterns, and
existing infrastructure, the voxel model enables designers to visualise and manipulate the
physical and environmental context of the project site. This empowers the designers to make
informed decisions in the translational process, as well as in the subsequent stages of the
generative process. (D4.2 Interim EIM Ontology Section 4.1.5)

Stage 2 of the deliverable entails the conceptual development of an ASP algorithm for Loop 1.
The ASP algorithm can enhance the interactions and interfaces between the key components
in Loop 1. EIM Ontology 1 is developed for the representation of Ecological Networks (ENs) as
a Knowledge Graph. It integrates User Networks (UNs) defined by the designer according to
the context, project, and user specific determinations and input. It reasons over the KG for
inference of decision rules by using ASP in future. The interaction of EIM Ontology 1 and the
ASP algorithm can enhance (1) the selection process and aid filtering the individuals (ontology
instances/KG nodes) that will be included in the KG (i.e. selection from the regional plant pool
according to conservation objectives), and (2) to advance informing the spatial distribution of
individuals with non-spatial, spatial, or spatio-temporal EN relations and guide the
configuration of 3D Networks (Ns) in CAD (D4.2 Interim EIM Ontology Section 4.1.4).

What we term Algorithm 1 in this context will include reasoning techniques including querying
and constraint checking. In stage 2 we foresee enhancing reasoning with ASP rules. This rule-
based algorithm ensures sound and complete answers to queries and constraints, thereby
ensuring that specific relationships are put into the design context with requirements that are
established in a graph, instead of a generic ecological query. The (2.5D/3D data) spatial or

 Deliverable 5.4 Version 2

 Page 22

(2.5D/3D and time-stamped data) spatio-temporal instances in the graph are then registered
as nodes/voxels in CAD. EIM Ontology 1 will be used in Algorithm 1 as there are defined
relationships such as “preys on”, “threatened species”, “invasive species” etc. and together
with the data coming from databases are fed to Algorithm 1. The algorithm will help with both
the “selection” and “distribution” process. (D4.2 Interim EIM Ontology)

At this stage of the translational process the Ontology is used for representation and
reasoning of KGs, which integrates ENs and UNs, and in future as an ASP algorithm that can
enable human controlled and automated reasoning to infer design instructions or decision
rules for the iterative configuration of 3D Networks in the CAD environment (Ns of CAD Model
1) under predefined and emergent constraints. These constraints might be coming from the
ontology (axioms, assertions, etc.), from designer defined inputs and general / meta-level
design rules that apply to all design cases that are integrated in Algorithm 1 (D4.2 Interim EIM
Ontology). EIM Ontology 1 is configured based on a set of competency questions, which will
need to be revised and expanded over time related to the selection and distribution processes
and the configuration of 3D Networks in CAD. This rule-based generative process using ASP
can generate single or multiple solutions, which then can be evaluated by the designer
manually and/or given as an input for graph optimization using machine learning to guide the
selection of “best” 3D network alternatives in each iterative step in the translational process.
We use a voxel-based system that allows retrieving and representing spatial nodes and turning
instances of the ontology into voxel data points in 3D space in CAD.

By utilising this voxel-based representation, the design process can effectively incorporate
spatial considerations, allowing for more comprehensive and informed decision-making.
Additionally, the voxel-based system enables the capturing and preservation of spatial
relationships between nodes, enhancing the accuracy and fidelity of the design
representation. This representation facilitates a more holistic understanding of the design
space, allowing designers to visualise and manipulate the elements in three-dimensional
space. By converting instances of the ontology into voxel data points in 3D space within CAD,
designers gain the capability to interact with the design at a granular level. They can
manipulate and modify the voxel-based representation, exploring different design
alternatives and evaluating their feasibility in real-time. Moreover, the integration of machine
learning techniques in the graph optimization process further enhances the design selection
process. By leveraging data and patterns, machine learning algorithms can provide valuable
insights and recommendations to guide the designer in selecting network alternatives. This
iterative feedback loop between the designer, Generative Process, and Machine Learning
optimization ensures a continuous improvement and refinement of the design solution.

The integration of this interface is done using the Hops component, where we query and
reason with the data from Ontology 1 stored in GDB. Typical queries include for instance:

● “What is the context of a particular node type?”
● “What kind of relations exist for this node type?”
● “Which kind of relations exist between node types?”

 Deliverable 5.4 Version 2

 Page 23

Answers are provided by the KG. In addition, the designer can ask questions that are specified
in the design brief, and that have been formalised in the KG and can be queried.
Regarding Algorithm 1 this is used for the next step of reasoning with constraints and rules
provided as input by the designer in the form of the dataset networks. Such constraints and
rules are fed to the ASP program.

The interface between CAD Model 1, Algorithm 1, and EIM Ontology 1 in Loop 1 serves two
main purposes: (1) it facilitates CAD Model 1 input, including voxel data used to initialise the
translational process and reasoning over the Knowledge Graph of ENs, and (2) it enables
designer feedback in each design iteration based on the 3D configuring Networks solutions,
which integrate ENs and UNs and are derived from EIM Ontology 1-driven rule-based
algorithmic procedures. The aim is to use a sequence diagram to illustrate the interactions
and flow of messages between the designer, KG component, and the algorithm component.
The diagram begins with the designer initiating the process by requesting information or
performing an action related to the algorithm. The KG component, responsible for managing
the ontology data, receives the request and processes it by querying the ontology and
retrieving relevant data. Algorithm 1 is an ASP algorithm employed in the generative design
process that represents complex constraints and provides a systematic approach to finding
feasible design solutions within the specified design space. This allows for the exploration and
generation of design solutions that meet constraints and requirements while leveraging the
Knowledge Base and reasoning capabilities of EIM Ontology 1 (see D4.2 Interim EIM Ontology
Section 4.1.8).

In the first loop of the ontology-aided design process the connection between the CAD Model
1 (CAD 1) and the ECOLOPES Voxel Model is facilitated through the McNeel Rhino 3D interface.
In this phase of the process, the designer configures networks in the Rhino 3D software. The
outcome of this process is a spatial configuration of the network nodes and their properties,
expressed as native Rhino objects. Spatial configuration and internal structure of the network
is validated by Ontology 1. The ECOLOPES Voxel Model features a Rhino 3D / Grasshopper
interface that allows the designer to interact with the voxel model, querying available datasets
that can be interactively visualised in the 3D viewport of the Rhino 3D software (see D5.2
ECOLOPES Voxel Model.)

2.2 Algorithms for the Generative Process: Loop 2

2.2.1 The Task

Loop 2 facilitates the generation of the spatial organisation (dataset volumes) for each case-
specific design output. First the design objectives, constraints, and criteria that guide the
generative process are defined. This step also includes specifying performance metrics related
to ecological and architectural criteria. These metrics are derived from the KPIs identified in
D6.1. EIM Ontology 2 is developed to generate query results for Competency Questions
related to the volume specification task according to specific criteria established in Loop 2,
and to enable the implementation of rules inferred from the ontology to aid the iterative
distribution of CAD Volumes in Loop 2. The selected type of algorithm then needs to generate

 Deliverable 5.4 Version 2

 Page 24

a set of design solutions that satisfy the set criteria. This involves manipulating the defined
parameters and constraints to generate a range of design alternatives.

2.2.2 Selected Types of Algorithms and related Workflow

The algorithms for Loop 2 facilitate Stage 1 of the generative computational design process,
by generating variants of spatial organisation through volume distribution for specific design
cases. Stage 1 in Loop 2 entails development of an Answer Set Programming (ASP) algorithm.
Stage 2 comprises a conceptual development for future advancement of the ontology-aided
generative design process. This entails extending Loop 2 with project-specific Genetic (GA)
and Machine Learning (K-means) algorithms (see Appendix 1 and Appendix 2). Stage 2 will not
reach full technical resolution and implementation.

Fig. 9: Spatial constraints and parameters for volume distribution in Loop 2.

The generative process is initiated in Loop 2 with the aim to generate variants of spatial
organisation via the distribution of architectural, biomass and soil volumes (dataset volumes).
The inputs include geometric constraints, volumetric constraints, and the datasets maps and
networks (Fig. 9).

In Loop 2 algorithms enable the generation of variants of spatial organisation by systematically
varying parameters and constraints that influence volume distribution. To facilitate this task
an ASP algorithm was selected for stage 1. Data can be accessed from the GraphDB’s SPARQL

 Deliverable 5.4 Version 2

 Page 25

endpoint to be queried and forwarded to the ASP algorithm to start the process of reasoning.
Different types of volumes (architectural, biomass, and soil volumes) are distributed in this
process, and checked if their distribution satisfies the criteria encoded in ASP. The data from
EIM Ontology 2 that is derived from its SPARQL endpoint is fed to the algorithm that generates
variations of spatial organisation via volume distribution. The ASP algorithm generates a set
of instantiations of volumes, visualised in the CAD environment, that satisfy the given
constraints. The generated design variations are then evaluated and ranked based on
predefined metrics derived from the KPIs identified in D6.1, enabling designers to compare
and select the most promising options. Through an iterative and interactive process, designers
can refine the generated spatial organisation variants. The final output of the algorithms is
spatial organisation through volume distribution.

For stage two we seek to develop on a conceptual level the utilisation of a GA and a ML (K-
means algorithm). The current initial state of development of the GA algorithm is documented
in appendix 1. The current state of development of the ML (K-means) algorithm is documented
in appendix 2.

2.2.3 Interfaces with EIM Ontology 2 and ECOLOPES Voxel Model

In EIM Ontology 2 we have properties such as “volume” that describe each volume regarding
whether it occupies one of the following values: air, architecture, soil, or biomass. The data
from EIM Ontology 2 that is derived from its SPARQL endpoint is fed to Algorithm 2 that
generates volume distribution. In case the constraints are not satisfied by ASP it is necessary
to either repair the distribution of volumes, or to re-generate the volumes from scratch.
Repairing the distribution of volumes in a minimal way is not always possible or can lead to
ambiguous solutions, e.g., remove/add volumeX or remove/add volumeY, where a designer
needs to choose between the two, while only knowing the impact of this decision further
down the line. (see D4.2 Interim EIM Ontology Section 4.2.1)

Fig. 10: In Loop 2 the generative design process is initiated to enable spatial organisation by
way of distributing architectural, biomass and soil volumes. The inputs for Loop 2 are
geometric constraints (e.g., project-specific site borders), volumetric constraints (e.g., as

 Deliverable 5.4 Version 2

 Page 26

specified by site-specific planning regulations), dataset maps (project-specific datasets
contained in the ECOLOPES Voxel Model), and the designer-defined dataset networks.

Once the ASP algorithm generates a set of instantiations of volumes that satisfy the given
constraints, these results are passed on to the CAD interface for visualisation and further
design refinement. To achieve this, an intermediate component called the Hops component
is employed. The Hops component is responsible for reading the results in JSON format, which
represent the instantiated volumes, and subsequently rendering them within the CAD
interface. By utilising the Hops component to bridge the gap between the output of the ASP
algorithm and the CAD interface, designers can visualise the generated volumes and assess
their feasibility. This interface enables designers to interact with the volumes, make
modifications, and refine the design. (see D4.2 Interim EIM Ontology) The ASP algorithm and
EIM Ontology 2 have direct access to data stored in the voxel model by the utilisation of SQL
virtualisation method. Moreover, voxel data available in the levels introduced for the
operation of EIM Ontology 2 (vox_lvl30_3 etc.) can be utilised in the CAD environment. The
interface developed for the visualisation and interaction with the voxel model as a part of the
task T5.1 (D5.2 ECOLOPES Voxel Model) enables designers to inspect the information utilised
by EIM Ontology 2 and the ASP in Loop 2. This data can be visualised in the Rhinoceros
interface and the results of the volume distribution can be graphically compared with the
underlying voxel data that informs the distribution process. (D4.2 Interim EIM Ontology)

The interface with the ECOLOPES Voxel Model involves the integration of relational databases
like SQLite, GraphDB, and PostgreSQL for efficient storage and management of voxel model
data. Open-source GIS software such as QGIS and SAGA GIS generates geospatial analysis
datasets, which can be converted into voxel-based representations. The voxel model also
integrates with GraphDB, allowing data virtualization and interaction with the EIM Ontology.
To ensure site-specific design proposals, coordinate space alignment is performed, enabling
accurate querying and utilisation of voxel model data. Architects and designers can interact
with the voxel model through the Grasshopper interface. The voxel model data is leveraged
in the generative computational design process. At the end of the generative process, the
voxel-based geometry is exported along with the CAD-based representation. ASP enhances
the interface by enabling logical reasoning and decision-making capabilities.

2.3 Algorithms for the Generative Process: Loop 3

2.3.1 The Task

Loop 3 facilitates the generation of geometric articulation (dataset landform) for each case-
specific design output. First the design objectives and constraints that guide the generative
process are defined. In subsequent development the computed KPIs will be part of this
initialisation of the generative process.

Loop 3 includes specifying performance metrics related to ecological and architectural criteria,
again this will in the next steps include the computed KPIs.

EIM Ontology 3 is developed to generate query results for Competency Questions related to
the geometry articulation task according to specific criteria established in Loop 3, and to

 Deliverable 5.4 Version 2

 Page 27

enable the implementation of rules inferred from the ontology to aid the iterative generation
of CAD geometry in Loop 3. The selected type of algorithm then needs to generate a set of
design solutions that satisfy the set criteria. This involves manipulating the defined
parameters and constraints to generate a range of design alternatives.

2.3.2 Selected Types of Algorithms and related Workflow

The algorithms for Loop 3 facilitate stage 2 of the generative computational design process,
by way of generating variants of geometric articulation for selected volume distributions
derived in Loop 2. Stage 1 in Loop 3 entails development of an Answer Set Programming (ASP)
algorithm. Stage 2 comprises a conceptual development for future advancement of the
ontology-aided generative design process. This entails extending Loop 3 with a Genetic (GA)
and a Machine Learning (K-means) algorithms. Stage 2 will not reach full technical resolution
and implementation, yet pave the way for future advancement of the ontology-aided
generative computational design process.

Fig. 11: In Loop 3 the generative design process is initiated to enable detailed geometric
articulation for selected spatial organisation. Initial volume distribution created in the previous
loop is supplemented by the definition of geometric constraints that are used as inputs to this
process. As a result, updated spatial representation of the design process results is created and
introduced into the ECOLOPES voxel model.

The generative process is finalised in Loop 3 by generating variants of geometric articulation
(dataset landform) for selected spatial organisation outputs of Loop 2. Stage 1 entails the
technical development of an ASP algorithm to enable the generation of variants of geometric
articulation by systematically varying parameters and constraints that influence geometric
articulation (e.g., building angle). Loop 3 data can be accessed from the GraphDB’s SPARQL
endpoint to be queried and forwarded to the ASP algorithm to start the process of reasoning.
Different types of terrain or landform features are articulated specific to selected volume
clusters representing architectural and soil volumes, and checked if their articulation satisfies
the criteria encoded in ASP. The data from EIM Ontology 3 that is derived from its SPARQL
endpoint is fed to the algorithm that generates variations of geometric articulation. The ASP

 Deliverable 5.4 Version 2

 Page 28

algorithm generates a set of instantiations of geometries, visualised in the CAD environment,
that satisfy the given constraints. The generated design variations are then evaluated and
ranked based on predefined metrics, enabling designers to compare and select the most
promising options. Through an iterative and interactive process, designers can refine the
generated geometric articulation variants. The final output of the algorithms is geometric
articulation associated with specific spatial organisation variants, i.e., volume distribution.

For stage two we seek to develop on a conceptual level the utilisation of a GA and a ML (K-
means algorithm). The current initial state of development of the GA algorithm is documented
in appendix 1. The current state of development of the ML (K-means) algorithm is documented
in appendix 2.

2.3.3 Interfaces with EIM Ontology 2 and ECOLOPES Voxel Model

The interface with the ECOLOPES Voxel Model involves the integration of relational databases
(see 2.2.3 and D5.3 ECOLOPES Voxel Model). The voxel model integrates with GraphDB,
allowing data virtualization and interaction with the EIM Ontology via a SPARQL endpoint.
Architects and designers can interact with the voxel model through the Grasshopper interface.
At the end of the generative process, the voxel-based geometry is exported along with the
CAD-based representation. ASP enhances the interface by enabling logical reasoning and
decision-making capabilities regarding the spatial organisation, i.e., volume distribution.
Different types of volumes (architectural, biomass, and soil volumes) are distributed in this
process. Subsequently, these volumes are checked to ascertain that they satisfy the criteria
encoded in ASP. This approach enables making determinations about permissible and non-
permissible proximities of volumes according to specified criteria and rules.

3 VALIDATION

Technical validation will take place within different WPs where specific components are
validated (Table 2). In this section we describe the technical validation of the components of
the ontology-aided generative computational design process. The validation includes the EIM
Ontology (D4.2 Interim EIM Ontology), the ECOLOPES Voxel Model (D5.3 ECOLOPES Voxel
Model) and the ECOLOPES Computational Model.

 Deliverable 5.4 Version 2

 Page 29

Table 2: Overview of components to be validated (summarised from the GA workshop in Genoa held at M24)

(D7.1 Report on the Methodology for ECOLOPES Multifunctionality Evaluation). The table shows the

validation of the ontology-aided computational design process within the overall context of validation of the

design approach, processes, and components.

Components Parameters WP How

Ecological

model/regional model

1. Regional connectivity

2. Functional groups

3. AFG and PFG biomass

distribution

WP4 1. Statistical correlation of real-
world data with simulated
results

2. Correlation between diversity
indices at a species level vs
FGs level.

3. a) Plausibility of KGF
outcomes; b) statistical
correlation of real-world data
with simulated results

Ontology aided

generative

computational design

process

1. Ontological output

2. Design output (ECOLOPES

Voxel Model and design

algorithms)

WP4, WP5 Computational validation based on the

Vienna Case Study.

1. Statistical analysis of
answers generated by
ontology using precision and
recall method (see D4.2
Interim EIM Ontology).

2. Comparative case-based
analysis of the ECOLOPES
Voxel Model (see D5.2
ECOLOPES Voxel Model);
Validation of the ECOLOPES
Computational Model (see
D5.3 ECOLOPES
Computational Model).

An overall validation of the ontology-
aided generative computational design
process will be also implemented (see
D5.4 ECOLOPES Computational
Model Validation)

Optimization and

decision-making

KPIs WP6 Computational validation of decision-

making algorithms (e.g., TOPSIS, AHP)

constructed in grasshopper using

external Python libraries.

Simulation environment

(KPIs)

KPIs-related parameters WP6-WP7 Computational validation of OTC (and

related parameters: air temperature,

relative humidity, mean radiant

temperature, wind speed) assessment

component

ECOLOPES mock-ups Soil and plant development, animal

colonisation, and microbiota

WP7 Monitoring and sampling on

ECOLOPES mock-ups (Building

Blocks)

ECOLOPES design

outcome/process

KPIs WP7 Expert interviews / user validation

Social outcome (human

perception and well-

being)

 Validate indirect and direct measures

of nature related well-being (e.g.,

PANAS, PRS, cognitive tests) and

measures of satisfaction of and

perceptions from the ecolopes.

WP7 Lab experiments in virtual reality

allowing immersion in environments

with different types of ecolopes.

 Deliverable 5.4 Version 2

 Page 30

3.1 Validation of the Components of the Ontology-aided Generative

Computational Design Process

3.1.1 Validation of the EIM Ontologies

The EIM Ontologies and the ontology-aided generative computational design process is an AI
powered system that combines Logic Programming (LP) e.g. Answer Set Programming (ASP)
for rules and constraints, Dataflow Programming (DFP) (Grasshopper), machine reasoning,
i.e., ontology-based reasoning (OBR), i.e., TBox only (subsumption of classes) or TBox + ABox
consistency checks (Protégé reasoner, e.g. HermiT), SPARQL-endpoint reasoning (RDFS or
OWL profiles in GraphDB) and Machine Learning (ML). (D4.2 Interim EIM Ontology)

The EIM Ontologies are located between the Knowledge Base and ECOLOPES Computational
Model. An interim KB currently contains the KGF results, a structured analysis of Ecological
Models run on multiple input geometries (D.3.3.); as well as architectural input and regional
data. From an information flow perspective, this can be represented in the following way,
although feedback, interactions, and interfaces alter this simplified schema:

→ Ecological Model → EIM Ontologies → design generation environment → optimization
environment→

EIM Ontology 1 effectively represents Ecological Networks (ENs) as a knowledge graph. The
latter can be reasoned and integrates User Networks (UNs) to generate query results for
Competency Questions related to the selection and distribution tasks according to specific
criteria established in Loop 1. Furthermore, it enables the implementation of rules inferred
from the ontology to aid the iterative configuration of CAD Networks (Ns) in the translational
process. (D4.2 Interim EIM Ontology)

EIM Ontology 1 is a knowledge graph that serves to convert design requirements and
constraints into computationally interpretable data. It includes various design-related
information, such as project-specific requirements, site characteristics, environmental factors,
and additional design constraints. EIM Ontology 1 provides a structured representation of this
data, allowing designers to access and query relevant information to aid in the design
generation process. By using this ontology, designers can effectively navigate and utilise
domain-specific knowledge that enables informed decision-making throughout the design
workflow. (D4.2 Interim EIM Ontology)

EIM Ontology 2 serves the generative process and aids the generation of spatial organisation
via volume distribution (dataset volumes). EIM Ontology 2 builds on EIM Ontology 1 and
generates query results for Competency Questions related to the volume specification task
according to specific criteria established in Loop 2, and to enable the implementation of rules
inferred from the ontology to aid the iterative distribution of CAD Volumes.

EIM Ontology 3 builds on EIM Ontology 1 and EIM Ontology 2 and is developed to generate
query results for Competency Questions related to the specific geometric articulation (dataset
landform) of selected volume distributions resulting from Loop 2. This is done according to
criteria established in Loop 3, enabling the implementation of rules inferred from the ontology
to aid the iterative generation of CAD geometry. This ontology describes and represents a

 Deliverable 5.4 Version 2

 Page 31

building or feature in an abstract form. The abstract representation of the building is used for
description and for reasoning.

For the ontology evaluations we will initially focus on consistency checks, Competency
Questions, completeness criteria, and best practice conformance. In the context of the Vienna
Case Study, we will likely also undertake measure against a golden benchmark and user study
evaluation.

The Knowledge Graph consists of instance data (ABox) and terminological assertions (TBox) -
i.e., axioms that can be imposed as restrictions on ABox (for more details refer to D4.2). We
compute consistency checks to see if there are any anomalies in our KG, i.e., see if there are
instances in ABox that satisfy the schema and constraints in the TBox. It can be the case due
to bad modelling practices to render the ontology inconsistent, i.e. there will be no instance
in ABox that can satisfy the constraints in TBox. Or, even in rather extreme cases TBox can be
inconsistent with itself in isolation. These consistency checks (ABox+TBox) come for free as
they are embedded in the Protégé tool that we are developing our ontology in and can be run
as needed.

Competency Questions are described in detail in deliverable D4.2 and they can be used to
check whether for a given query there is always a result returned. For competency queries we
have distinguished between ASK and SPARQL queries that can be posed over a KG. SPARQL is
a standardised language for querying knowledge graphs and has its “look and feel” like SQL.
ASK queries are a specialisation of SPARQL queries - with the same query body but a different
query head - in the sense that instead of returning answers, they return true or false
depending on whether there are answers or not returned by the query. This can be sufficient
for some use cases in which it is not required to know the answers but to the extent if there
are answers at all. As an example, we provide the CQ from D4.2 that returns ‘threatened
species, and here you can see the difference between the two.

SELECT * WHERE { ?s a :Species ; :status :threatened }

ASK WHERE { ?s a :Species ; :status :threatened }

Validation is described in D4.2. For each CQ a corresponding ASK and SELECT is created, which
are evaluated against GraphDB’s SPARQL endpoint. Such requests can be automated with curl
requests that can be imported as Postman collections so that they can be maintained, shared,
and run periodically.

Regarding completeness criteria we use the notion of Relative Completeness (Balaraman et al.),
which means that we check for each entity (e.g., species) how complete it is with respect to
other entities of the same type (species). To illustrate with the previous example: we can check
if all the species have the :status property or not, given that such a property is very
important for species. As a baseline, we can take all species of the same type, e.g., for class
:Animal we compute all the properties and attributes that all entities have and based on

selection of TOP 5 properties and attributes, we see if other entities of the same class type
have those or not, measuring the relative completeness of the entity. Using this notion of

 Deliverable 5.4 Version 2

 Page 32

relative completeness, we compute the percentage of the entity, e.g. the entity :A is 60%=3/5
because it does not have properties X and Y that predominantly exist in the similar entities
(same class type), but it has others in TOP 5: Z, V, W. Based on this feedback, we can refine
further our KG and add properties X and Y for entity A if we can increase completeness by
incorporating a further dataset.

We plan to compute the relative completeness measure for all entities, as they can be
automated using SPARQL queries, see Relative Completeness Indicator (Recoin) for Wikidata.

Regarding the final point, best practices conformance we have already created our ontologies
using a URI scheme, reusing taxonomies and ontologies whenever possible (e.g., geonames),
and checking against a service that can detect and evaluate the ontology (see
https://themis.linkeddata.es/).

3.1.2 Validation of the ECOLOPES Voxel Model

The Voxel Model receives data from different sources including relevant databases, the
Ecological Model, the Knowledge Generation framework, and if required from various
simulations executed in Geographic Information Systems (GIS) software. Relevant data can be
indicated and / or called via the EIM Ontologies. Data contained in the Voxel Model can then
be utilised in the data-driven generative computational design process through which design
outputs are created that consist of (1) geometry contained within the CAD model, (2) design
specific data contained in the voxel model, and (3) ontological output. The resulting data
package can then be used within the optimization process to derive design outputs with
optimised architectural and ecological performances. In the following subsections we deliver
a conceptual and technical characterization of the Ecolopes Voxel Model.

The ECOLOPES Voxel Model uses a range of technologies to link the voxel data encoded in an
RDB-based voxel model with the Rhinoceros / Grasshopper interface. Figure 12 shows how
the chosen software technologies are used in the ECOLOPES Voxel Model implementation.
This implementation builds on the technologies readily available within the McNeel
Rhinoceros software ecosystem. Rhinoceros and Grasshopper are one of the most widely used
tools in architectural design. Originally, McNeel introduced GHPython components into the
Grasshopper environment, based on the IronPython (IronPython, 2017). To overcome some
of the limitations posed by the IronPython, we used the Grasshopper Hops components,
which adds external functions to Grasshopper through Rhino.Compute. Hops integrates a
modern Python interpreter (CPython 3.9) with the Rhinoceros/ Grasshopper environment
through a REST API based interface. ECOLOPES Voxel Model Grasshopper definitions are
written as Hops components to establish an interface with the RDB. SQLAlchemy Python
library (SQLAlchemy, 2018/2023) is used to provide an SQL-dialect agnostic solution for
integrating RDBs with the digital design process implemented in the Rhinoceros software. For
the RDB-based ECLOPES Voxel Model, different types of RDBs, including SQLite, MariaDB and
PostgreSQL, have been prototyped and tested. Python technology was chosen, among others,
due to its wide compatibility. Python version 3.9 is compatible with McNeel libraries. The
Python Hops application has been packaged into a single executable file for internal
distribution. The presented application has been successfully tested on both Windows and

https://themis.linkeddata.es/

 Deliverable 5.4 Version 2

 Page 33

MacOS platforms, including the ARM based M1 architecture. Data contained in the voxel
model has been created with a range of open-source geospatial analysis tools, such as QGIS
(Open-Source Geospatial Foundation Project 2020), Whitebox Tools (Lindsay 2016) and SAGA
GIS (Conrad et al. 2015).

Fig. 12: Technologies utilised to implement the ECOLOPES Voxel Model were linked in a
sequence. RDB-based voxel data can be queried through the McNeel Python Hops application
packaged into a single executable file. This Python application exposes voxel data in the
McNeel Rhinoceros/ Grasshopper environment for user interaction.

 Deliverable 5.4 Version 2

 Page 34

Fig. 13: Datasets contained in the ECOLOPES Voxel Model include geometric and classification
data. This includes environmental performance data such as, for instance, topographic
wetness index, as well as time series data describing insolation time and wind exposure.

Fig.14: Left: Screenshot of the GraphDB interface, showing how data contained in the
ECOLOPES Voxel Model can be queried and represented in an ontology-based format (RDF
triples) Right: Data saved in the RDB-based voxel model can be virtualized in GraphDB, by
defining the mapping between the RDB and GDB data structure in an OBDA / R2RML file.

The functionality of the ECOLOPES Voxel Model was tested internally by the development
team throughout the stages of the development of the Voxel Model, including the alpha
version to ensure that the required TRL was reached. The internal validation is based on data
availability and current development of other components, such as EIM Ontologies (D4.2

 Deliverable 5.4 Version 2

 Page 35

Interim EIM Ontologies) and ECOLOPES Computational Model (D5.4 ECOLOPES Computational
Model).

The datasets contained in the ECOLOPES Voxel Model have been validated. Typical data
validation tests, including data types, formats and consistency checks have been executed.
Secondly, the process of conversion of raw input datasets into ECOLOPES Voxel Model
datasets has been validated. The tabular representation of the raw data and ECOLOPES Voxel
Model has been compared to identify possible errors in translation. These two
representations of the ECOLOPES Voxel Model datasets have been manually inspected and
consistency checks that validate total row count and data types have been executed. This was
followed by the visual inspection of the graphical representation of the datasets. Raw input
data has been translated into a 2.5D representation compatible with widely used GIS software
and visualised in the QGIS interface. This data visualisation has been compared with the 3D
representation of the same data encoded in the ECOLOPES Voxel Model, generated in
Rhinoceros 3D software. This allowed us to validate visually the consistency of the datasets
contained in the ECOLOPES Voxel Model. In the future it is expected that new datasets will be
introduced into the ECOLOPES Voxel Model. Analogous process of validation will be executed
to check the consistency of the datasets contained in the ECOLOPES Voxel Model.

Secondly, the ECOLOPES Voxel Model components developed in the process have been
validated in a short test case. This test case, presented in Figure 15, was used to validate the
basic set of components required to read data from the ECOLOPES Voxel Model in the
Rhinoceros and Grasshopper environment.

Fig. 15: Example of Grasshopper Hops components implemented to enable the interaction
between the designer and the ECOLOPES Voxel Model through the McNeel Grasshopper
interface.

The ECOLOPES Voxel Model components are developed iteratively, and each finished iteration
is packaged as a standalone Python application. Currently only an .exe file for Microsoft
Windows platform is produced, but initial tests to include Linux / MacOS platforms and
containerized, cloud-based developments have been successfully completed. Each new
iteration of the packaged application is manually validated against the test case file. In future,
as new functionality will be implemented, additional test cases will be introduced into the
process.

 Deliverable 5.4 Version 2

 Page 36

Finally, the Vienna Case Study will provide an additional level of validation that will address
both internal functionalities and the overall functionality of the envisioned computational
design process. Individual components implemented as a part of the ECOLOPES Voxel Model,
EIM Ontologies and the ECOLOPES Computational Model will be validated, based on the
interactions with the designers executing the Vienna Case Study. Moreover, the overall
approach and the interactions between the parts of the design process will be validated
through this case study.

3.1.3 Validation of the ECOLOPES Computational Model

Regarding the ECOLOPES Computational Model, the primary approach that will be technically
implemented is known as Answer Set Programming (ASP). Lifschitz explained that “the idea of
answer set programming is to represent a given computational problem by a logic program
whose answer sets correspond to solutions, and then use an answer set solver … to find an
answer set for this program”. (Lifschitz, 2002). Mueller elaborated further that “answer set
programming is an approach to knowledge representation and reasoning. Knowledge is
represented as answer set programs, and reasoning is performed by answer set solvers.”
(Mueller, 2015) (D5.3 ECOLOPES Computational Model)

Our team recognises that the ontology-aided generative computational design process would
in principle benefit from a combination of different types of algorithms with different specific
functionalities. However, purpose-configuring a multitude of algorithms with different
functionalities and ensuring proper functional interaction is a complex undertaking that
exceeds what is possible in the ECOLOPES research project. To address this question, we
pursue a two-stage process. (D5.3 ECOLOPES Computational Model)

Stage 1 entails algorithms that will be technically implemented by the end of the project at
the required TRL. Stage 1 has no algorithmic process in Loop 1 but employs ASP in Loop 2 and
Loop 3. Stage 2 comprises a conceptual development that will not reach technical
implementation at the required TRL. This includes conceptualising ASP for use in Loop 1 and
extending Loop 2 and Loop 3 with a Genetic Algorithm (GA) and a Machine Learning algorithm
(K-means). While stage 2 will not reach full technical resolution and implementation it will
provide a clearly defined approach for future development of the ontology-aided generative
computational design process. (D5.3 ECOLOPES Computational Model)

In the context of ontology evaluation, we discussed different evaluation criteria which are
applicable in the context of algorithms. These include:

● Measure (e.g., F-score) against a golden benchmark
● User study evaluation

In this context, algorithms are evaluated both separately and in terms of their interactions
between Loop 1 - Loop 2 and Loop 2 - Loop 3.

Regarding measuring a F-score, we need a golden dataset that is annotated by an expert user
that given a specific input, it also provides the actual answers that should be returned by the
algorithm. Based on the golden dataset, we can compute the measure of F1-score that
computes the precision (accuracy) and recall (completeness). The creation of such an
annotated golden dataset is yet to be created.

 Deliverable 5.4 Version 2

 Page 37

The user study evaluation will be a survey given to the expert users to determine if the results
returned make sense based on a predetermined set of tasks to be done by the user. This will
be intertwined along with validation of the Vienna Case Study.

3.2 Validation of the Interaction between the Components

In this section we describe the technical validation of the interactions between the
components of the ontology-aided generative computational design process. These include
interactions between the EIM Ontology (D4.2 Interim EIM Ontology), the ECOLOPES Voxel
Model (D5.3 ECOLOPES Voxel Model) and the ECOLOPES Computational Model. The
interactions between the components are key to facilitating the translational process (Loop 1)
and the generative process (Loop 2, Loop3).

3.2.1 EIM Ontology and ECOLOPES Voxel Model

Currently the EIM Ontologies are undergoing intensive development and in the upcoming
months both the structure of the EIM Ontologies and the functionalities required for the
interaction with other components of the ECOLOPES Computational Design workflow will be
further developed. The ECOLOPES Voxel Model has reached an advanced level of
development (D5.3 ECOLOPES Voxel Model). In the upcoming months, the interactions
between EIM Ontologies and ECOLOPES Voxel Model will be validated and required
adaptations of the existing computational components will be made to facilitate the seamless
integration between EIM Ontologies and ECOLOPES Voxel Model.

Validation of the interoperability of datasets contained in the EIM Ontologies will be
conducted in the following months as the development of EIM Ontologies advances. In this
process, typical data validation tests, including data types, formats and consistency checks will
be executed. Raw data derived from queries executed against the deployed GraphDB instance
(containing EIM Ontologies) and the deployed PostgreSQL instance (containing ECOLOPES
Voxel Model) will be validated to make sure that no errors are introduced into the data in the
bi-directional translation process between the EIM Ontologies and ECOLOPES Voxel Model.
Likewise, the outcomes of this process will be validated visually by the designers. Data
returned by the implemented components will be visualised in the Rhinoceros interface and
evaluated by the designers.

Secondly, interactions between the computational components developed for ECOLOPES
Voxel Model and EIM Ontologies will be validated in short test cases. Initial approach to
initiate a validation approach that utilises test cases can be seen in Figure 16. In this example,
an interactive connection between the GraphDB environment that contains EIM Ontologies
and the ECOLOPES Voxel Model has been established. Initial validation was conducted by a
simple test case, allowing the designer to query locations suitable for plants requiring high
sunlight exposure. Computational components developed in this process are utilising
analogous methods to the ECOLOPES Voxel Model components. New functionalities are
introduced iteratively. After each iteration a new standalone executable file is produced and
validated against existing test cases.

 Deliverable 5.4 Version 2

 Page 38

Fig. 16: Integration between the ECOLOPES Voxel Model and an exemplary dataset stored in
the GraphDB. Query and reasoning functionalities provided by the SPARQL endpoint can be
implemented within the computational setup of the ECOLOPES Voxel Model. Systematic, voxel-
based data structuring enables interoperability between the two components, implemented
by Grasshopper and Hops (for a more detailed explanation see D5.3 ECOLOPES Voxel Model).

Higher-level validation will be conducted in the Vienna Case Study, where the interactions
between EIM Ontologies and ECOLOPES Voxel Model will be validated based on the
interactions provided by the designers working on the Vienna Case Study. Individual
functionalities of the components constituting the EIM Ontologies and ECOLOPES Voxel Model
will be adapted to reflect the results of the validation to assure the applicability of the
computational approach provided by the EIM Ontologies and ECOLOPES Voxel Model in the
context of a design process.

3.2.2 EIM Ontology and ECOLOPES Computational Model

The EIM Ontologies (D4.2 - Interim EIM Ontologies) are being developed and further enriched
with datasets that are deemed relevant for the domain. The integration with the
Computational Model needs to be validated to ensure that the results are sound and can be
used in the subsequent optimization environment and process (WP6). In terms of data-level
integration there will be no need for an integrated test between Ontologies and
Computational Model given that the data is used in isolation for each part. Regarding
functional integration a set of test cases will be used to validate whether the functionality is
correct in terms of integration. The designer input will be useful in the validation to decide
whether the integration is correct based on the visualisations produced in Rhino. As a final

 Deliverable 5.4 Version 2

 Page 39

step, we will undertake validation in the context of the Vienna Case Study, where in this use
case as the validation progresses, we can further adjust and see which parts need change or
data refinement.

3.2.3 ECOLOPES Voxel Model and ECOLOPES Computational Model

At the time of writing, ECOLOPES Computational Model components are being actively
developed and it is anticipated that in the upcoming months numerous additional
functionalities will be introduced. At the same time the ECOLOPES Voxel Model has reached
an advanced level of development (D5.2 ECOLOPES Voxel Model). Interactions between
ECOLOPES Voxel Model and ECOLOPES Computational Model will be validated in the next
steps, following the introduction of the functionalities implemented as a part of the ECOLOPES
Computational Model.

Extensive validation of datasets utilised in the ECOLOPES Computational Model is not
required, since this model operates primarily on the datasets contained in the EIM Ontologies
and in the ECOLOPES Voxel Model. Components of the ECOLOPES Computational Model are
utilised in three loops and each loop has different data requirements. Translation of the data
into required representation is facilitated by the components implemented within the
ECOLOPES Voxel Model and EIM Ontologies. For this reason, additional low-level validation at
the level of data is not expected in this process.

Functional validation of the interactions between ECOLOPES Voxel Model and ECOLOPES
Computational Model will be facilitated analogously to the interactions between EIM
Ontologies and ECOLOPES Voxel Model. Test cases will be identified, and the iterative
development of the components will be validated against the identified test cases. Visual
representation of the interactions between ECOLOPES Voxel Model and ECOLOPES
Computational Model will be validated by the designers in the process of continuous
development.

The Vienna Case Study is introduced to provide higher-level validation for the interactions
between ECOLOPES Voxel Model and ECOLOPES Computational Model. The designers that will
implement the Vienna Case Study will be evaluating individual functionalities of the
components implemented within the process. Interactions between the ECOLOPES Voxel
Model and ECOLOPES Computational Model will be iteratively validated and required
adaptations will be introduced throughout the course of the Vienna Case Study.

3.3 Validation of the Design Output: The Vienna Case Study

The Ecolopes research project includes individual case studies for the cities of Vienna, Munich,
Genoa, and Haifa. A consistent logic is applied to specific aspects across the case studies
(D7.1).

In the Vienna Case Study, it is necessary to test and validate the ontology-aided generative
computational design workflow. In this section we describe preparations for validation of
design output of the components and the workflow of the ontology-aided generative
computational process (design generation environment) in the context of the Vienna Case
Study. For the case study we have selected a location on which currently a real-life

 Deliverable 5.4 Version 2

 Page 40

development project is taking place, namely the “Nordbahnhof Freie Mitte” development
plan. The case study is currently in preparation and will run from October 2023 to the end of
January 2024 and will involve researchers from WP4.7 and WP5.

The case study will serve to test and validate the ontology-aided generative computational
design process in terms of the components, component interaction, and design output.
Criteria for site selection included suitability of site characteristics for the intended design
experiment and specified design cases, as well as data availability. The selected site is
characterised by a central large green area with a variety of green space designations and well
documented existing local ecosystems that offer considerable opportunities for the design of
ecological building envelopes.

Fig. 17: Location of the Nordbahnhof Freie Mitte development site in the context of Vienna.
(Source: Google Earth)

 Deliverable 5.4 Version 2

 Page 41

Fig. 18: Document of the municipal development of the development site Nordbahnhof Freie
Mitte (left) and axonometric view of the intended programmatic and volumetric composition
of the masterplan. (Vlay, 2015)

Two design cases were specified that are common design cases in architectural practice.

Design Case 1 addresses the design of a master plan for the development of a given site. In
such cases the number and distribution of building volumes, including footprint, floor area
ratio, maximum volume, and maximum height, are not yet defined. In the context of this
research this entails that spatial organisation is generated through the distribution of
architectural, biomass and soil volumes, which we term for case 1 primary volumes, as well as
geometric articulation of site and buildings leading to what we term for case 1 primary
landform. Landform can therefore be coherently designed across the entire site, with all
volumes adhering closely to the landform scheme. For design case 1 we selected a plot from
the overall masterplan that is large enough to accommodate an ensemble of buildings and
landscape design of the plot.

Design Case 2 addresses the design of an individual building for which all constraints, such as
footprint, floor area ratio, maximum volume, and maximum height, etc. are already
established by a municipal master plan. Since the generic maximum allowed primary volume
is already given by the masterplan, the task is to partition the primary volume into secondary
and tertiary architectural, biomass and soil volumes. To enable different species to inhabit the
envelope it is useful to develop the building geometry as a secondary and tertiary landform
(hierarchical nesting of terrain features) to enable accessibility and appropriate provisions for
specified species to specified parts of the building envelope. For design case 2 we selected a
specified area for one building that is defined by the current master plan in terms of allocated
building footprint, floor area ratio, maximum volume, and maximum height, etc.

Primary volumes define the location of buildings, and overall biomass and soil volumes. Once
primary volumes are located it is possible to detail them further by locating secondary and
tertiary volumes, which entail more specific architectural, green and soil volumes. Since the

 Deliverable 5.4 Version 2

 Page 42

purpose of geometric articulation is to shift from generic (cuboid) geometry to urban landform
with distinct terrain features, a matching hierarchical order is established. Primary landform
delivers a first overall level of geometric articulation to primary volumes, especially for
architectural and soil volumes. Secondary and tertiary landforms are subsequently generated
to derive more detailed geometric articulation and geodiversity to enhance the possibility of
meeting diverse ecological and architectural requirements.

Validation of the design outcome will be based on fulfilment of architectural and ecological
criteria set by the design brief, including specified KPIs (these will be selected to match with
selected KPIs in the overall ECOLOPES research project). This will also include set criteria for
compensation for the loss of unsealed areas due to the building footprint(s) by built surfaces
covered with soil of specified depth, as well as the reuse of soil that needed to be excavated
for construction purposes and for underground spaces. Moreover, this includes criteria
pertaining to water management, i.e., water distribution for irrigation purposes and on-site
rainwater drainage.

In addition to the fulfilment of architectural and ecological criteria we will establish
benchmarks for proportional relations of architectural, biomass and soil volumes that exceed
current state-of-the-art designs. The development of such benchmarks will follow the
example listed in section 5 regarding the development of design benchmarks in master-level
design studios.

In the Vienna Case Study, we will place focus on validating the output of the three loops that
make up the ontology-aided generative computational design process.

Loop 1 facilitates the configuration of the dataset networks in a voxelized 3D space,
materialised in the Rhinoceros CAD environment. It involves EIM Ontology 1 (KG), the
ECOLOPES Voxel Model, and the CAD environment. Validation of the outputs resulting from
the processes proposed in the Loop 1 can be approached from the technical and domain-
specific perspective. Currently, the components implemented as a part of Loop 1 are at
different stages of development. The ECOLOPES Voxel Model has reached an advanced level
of development where most of the required functionalities are implemented. EIM Ontology 1
has been largely conceptualised and initial tests related to dataset interoperability have been
executed. Components of the ECOLOPES Computational Model considered for the Loop 1
have also been conceptualised. It has been decided that reasoning capabilities available in the
computational framework used to implement EIM Ontology (GraphDB) are sufficient to
provide algorithmic support for the design processes proposed for the Loop 1. At the time of
the start of the case study the anticipated state of the EIM Ontology 1 and related algorithmic
procedures used for reasoning (SPARQL queries) will be further advanced. From the technical
perspective, previously described components will be validated regarding the interoperability
of the components and the functionality of the interfaces. From the domain-specific
perspective, the ECOLOPES Voxel Model, EIM Ontology 1 and the ECOLOPES Computational
Model will be validated through the interactions with the designers conducting the Vienna
Case Study. This activity will provide feedback on the overall functionality of the individual
components as well as the functionality of the interfaces between the components. Regarding
the input data validation, ecological data from the database used for ecological modelling (TRY

 Deliverable 5.4 Version 2

 Page 43

traits database) has been pre-examined as a part of the WP4 activities. Initial comparison
between the data retrieved from the TRY database and a local species list retrieved from the
environment map of the City of Vienna “Stadt Wien - Umweltgut” has been conducted. In the
following steps, further validation of the interdisciplinary datasets will be conducted.
Regarding the output data, both the technical and domain-specific validation will be
conducted. Technical validation will consist of typical data type and consistency checks.
Domain-specific validation will be conducted incorporating disciplinary perspectives
representative for the disciplines involved in the functionalities of the Loop 1 components.

A key question in the context of a site and design brief specific case study is whether and to
which extent specific process steps are generally applicable and to which extent outputs are
generalisable. For Loop 1 the deployment of GIS-based simulations provides a generally
applicable method for data generation (datasets maps). Each generated dataset is geo-
location and frequently time specific. The designer configured datasets networks (i.e.,
stakeholder networks) are, however, not only specific to a given site, but also informed by the
design brief for a given project. Their configuration involves querying a KG (EIM Ontology 1)
and is therefore reliant on the content of the KG. To be applicable to a broad range of sites
the KG needs to be extended over time.

Loop 2 facilitates generating spatial organisation via the distribution of architectural, biomass,
and soil volumes in a voxelized 3D space, materialised in the Rhinoceros CAD environment.
This involves EIM Ontology 2, ASP, and CAD Model 2. Both the technical and domain-specific
validation will be conducted in the context of functionalities implemented in Loop 2. Given
the different levels of advancement of different components, extensive validation could not
have been executed at the current point in time. The ECOLOPES Voxel Model has reached an
advanced level of implementation while the components of the EIM Ontology 2 and the
ECOLOPES Computational Model have been conceptualised. Currently, Loop 2 extends the
scope of the proposed algorithmic components by including the Answer Set Programming
(ASP) element. On the technical level, interoperability between the ECOLOPES Voxel Model,
EIM Ontology 2 and the chosen ASP solver (Potassco ASP) has been initially validated. Since
the remaining interfaces are analogous to the implementation proposed in the Loop 1,
detailed validation of all components will be conducted as a part of the Vienna Case Study. At
the same time, domain-specific validation of both the datasets and the components of Loop
2 will be conducted as the Vienna Case Study progresses.

A key question in the context of a site and design brief specific case study is whether and to
which extent specific process steps are generally applicable and to which extent outputs are
generalisable. For Loop 2 the deployment of EIM Ontology, ASP, and ECOLOPES Voxel Model
requirements, constraints and site-specific variants of spatial organisation are created. The
output of Loop 2 are variants of spatial organisation, that is, different distributions of
architectural, biomass, and soil volumes that are geo-location and time specific. The process
is configured to be generally applicable for all sites and design briefs. The design outputs are
site and design brief specific. Benchmarks for design output evaluation and ranking can either
be general (i.e., comparison with current state-of-the-art green architectures irrespective of
location), or can be location specific (i.e., comparison with local state-of-the-art green
architectures).

 Deliverable 5.4 Version 2

 Page 44

Loop 3 facilitates the generation of geometric articulation of selected spatial arrangements
derived in Loop 2 in a voxelized 3D space, materialised in the Rhinoceros 3D CAD environment.
It involves EIM Ontology 3, ASP, and CAD Model 3. In analogy to the previous loops, the
components of Loop 3 are validated both from the technical and domain-specific perspective.
Development of those components is largely dependent on the progress of the computational
processes constituting the Loops 1 and 2. It is anticipated that the interfaces implemented for
the interaction between EIM Ontology and the Potassco ASP solver will be applied as a part of
the functionalities implemented within the Loop 3. The Vienna Case Study is introduced into
the process to provide the context in which the algorithmic procedures constituting the Loop
3 of the ECOLOPES Computational Model will be validated. In this context, both the technical
and domain-specific constraints of the datasets and computational components will be
validated as the Vienna Case Study progresses.

A key question in the context of a site and design brief specific case study is whether and to
which extent specific process steps are generally applicable and to which extent outputs are
generalisable. For Loop 3 the deployment of EIM Ontology, ASP, and ECOLOPES Voxel Model
requirements, as well as selected spatial configuration variants in CAD, constraints and site-
specific variants of spatial organisation are created. The output of Loop 3 are variants of
geometric articulations for selected volume distributions, that is, landform consisting of
terrain features that are geo-location and time specific. The process is configured to be
generally applicable for all sites and design briefs. The design outputs are site and design brief
specific. Benchmarks for design output evaluation and ranking can either be general (i.e. broad
comparative analysis based comparison with build form, i.e. landform architecture, or natural
landscape instances), or can be location specific (i.e. comparative analysis based comparison
with local landform buildings or local natural landscape instances).

3.4 Validation of the Robustness of the Approach for Architectural Practice

Given the overall aim of the ECOLOPES research project to develop a design approach and
computational design workflow for use in architectural practice, it is necessary to validate the
robustness and usefulness of the approach in a simulated practice context. In WP5 we validate
the robustness of the ontology-aided generative computational design process for use in
architectural practice. We base our approach on the understanding that an architect with a
first degree (BA) in architecture should be able with a reasonable amount of additional training
to instrumentalise the conceptual, methodological, and computational aspects of the
ontology-aided generative computational design process. Therefore, we utilise master-level
design studios and master thesis projects at TU Wien as testbeds for this purpose. This part of
the validation examines (1) the type of training that is necessary to enable master-level
students (see also D7.1 report on the methodology for multifunctionality evaluation, Section
5) to work with the ECOLOPES approach, and (2) evaluates learning outcomes based on design
outcomes of ECOLOPES projects undertaken by the students. In the following subsections we
describe how master-level design studios and master thesis projects at TU Wien served this
purpose.

Master-level design studios at TU Wien serve the purpose of establishing whether architects
with a first degree (BA) can comprehend and work with the conceptual approach, as well as

 Deliverable 5.4 Version 2

 Page 45

the related methods and tools. To ensure practice relevance of the projects we introduced
and pursue two distinct design cases that frequently occur in practice and for which the
ontology-aided generative computational design process needs to generate relevant results.
Here we examine (1) the type of training that is necessary to enable master-level students to
work with the ECOLOPES approach, and (2) evaluates learning outcomes based on design
outcomes of ECOLOPES projects undertaken by the students. Four master-level studios have
been concluded and an intensive summer studio is currently underway. The first two master-
level studios focused on the design of a Kindergarten ecolope in a peripheral area of the city
in Wien Liesing neighbouring a Natura 2000 site. This site is characterised by data richness
regarding local species pools. The second site that is used for the third and fourth is identical
with the site for the Vienna Case Study, the Nordbahnhof - Freie Mitte development site. Two
further studios are planned for 2024-25 that will focus on the same site.

Table 2: Overview of the six master-level Ecolopes studios, including sites, focus and stages of development,
and primary research and design approach. The studios are organised in pairs, running the identical program
back-to-back. Focus and stages of development are shifted after each completed pair of studios. Studios 1 and
2 initiate the translational process development. Across all six studios the translational process is developed
in three phases, placing emphasis on the high level of designer involvement in preparing the input for the
generative process. Studios 3 and 4 initiate the development of the generative process regarding spatial
organisation (Loop 2 - dataset volumes). Studios 5 and 6 will initiate the development of the generative process
regarding geometric articulation (Loop 3 - dataset landform).

Ecolopes Studios Program Phase 1
Development

Phase 2
Development

Phase 3
Development

Research & Design
Approach

Studio 1
Winter semester
2021-22

Kindergarten
Liesing

Translational
Process Loop 1
Datasets Maps &
Networks

– – Research by Design

Studio 2
Summer semester
2022

Kindergarten
Liesing

Translational
Process Loop 1
Datasets Maps &
Networks

– – Research by Design

Studio 3
Winter semester
2022-23

Nordbahnhof Freie
Mitte
Design Case 1 &
Design Case 2

Generative Process
Loop 2
Dataset Volumes

Translational
Process Loop 1
Datasets Maps &
Networks

– Research by Design
Evidence-based
Design

Studio 4
Summer semester
2023

Nordbahnhof Freie
Mitte
Design Case 1 &
Design Case 2

Generative Process
Loop 2
Dataset Volumes

Translational
Process Loop 1
Datasets Maps &
Networks

– Research by Design
Evidence-based
Design

Studio 5
Summer semester
2024

Nordbahnhof Freie
Mitte
Design Case 1 &
Design Case 2

Generative Process
Loop 2
Dataset Volumes

Generative Process
Loop 2
Dataset Volumes

Translational
Process Loop 1
Datasets Maps &
Networks

Research by Design
Evidence-based
Design

Studio 6
Winter semester
2024-25

Nordbahnhof Freie
Mitte
Design Case 1 &
Design Case 2

Generative Process
Loop 2
Dataset Volumes

Generative Process
Loop 2
Dataset Volumes

Translational
Process Loop 1
Datasets Maps &
Networks

Research by Design
Evidence-based
Design

 Deliverable 5.4 Version 2

 Page 46

For the studios we purpose-configured a teaching plan that was updated and developed from
semester to semester. At TU Wien a one semester-long design studio typically consists of
weekly half-day sessions distributed over 15 weeks. We configured a teaching plan consisting
of lectures, seminars, and workshops, accompanied by tutorial sessions focusing on the
students' individual design projects.

To ground the studios scientifically and methodologically we selected three key approaches
that facilitate the work, including research-through-design (Frayling, 1993; Rogers & Yee,
2015) methodology (Lenzholzer et al, 2017), evidence-based design (Stichler, 2010), and data-
driven design (Deutsch, 2015), with an explicitly interdisciplinary take on the latter (Hensel &
Bier, 2022). Lenholzer et al. distinguished between four types of research-through-design: (1)
(post-)positivism, (2) constructivism, (3) transformative, and (4) pragmatism (Lenholzer et al.,
2013; Lenzholzer et al, 2017). For the Ecolopes studios we mainly draw upon the post-
positivist and the pragmatist approach. The post-positivist approach is characterised by
questions concerning physical and functional matter, prescriptive, objective, deductive, and
quantitative design knowledge (aimed at verifying hypotheses and design guidelines). This
approach deploys design hypothesis testing, ‘before and after design’ experiments, following
a strict protocol. Research evaluation criteria are quantitative, objective, and generalisable.
The pragmatist approach is characterised by problem-solving real-world questions, practice-
orientation, inclusion of various types of design knowledge. It deploys mixed methods that
depend on the research questions, and research evaluation criteria that depend on the
selected research questions and methods. (Lenholzer et al., 2013; Lenzholzer et al, 2017) In
order to ground the research-through-design approach in scientific evidence we complement
it with an evidence-based design (EBD) approach. Sackett et al. defined evidence-based
practice for any discipline as “the conscientious, explicit, and judicious use of current best
evidence in decision making”. (Sacket et al, 1996, p. 71) Stichler defined evidence-based
design as “the optimal use of existing research evidence to guide design decisions” (Stichler,
2010). Furthermore, we introduced an interdisciplinary approach to data-driven design
(Hensel & Bier, 2022; Sunguroğlu Hensel et al, 2022) to enable a multi-domain approach to
data-driven design computing.

A further key aspect was the selection of software tools. Students were required to have
adequate working knowledge in Rhinoceros and Grasshopper to participate in the studio. In
this context students need to be introduced to some fundamentals in utilising data-sources,
including the use of databases and the generation of required data through simulations.
Regarding the latter, students are introduced to Geographic Information Systems (GIS), as well
as to some fundamentals of data structuring.

To facilitate students with the necessary knowledge and skills for the translational process,
the evidence-based design approach was coupled with multi-domain data driven design.
Targeted simulations in GIS enables students to derive geo-spatial datasets (dataset maps).
Moreover, the evidence-based approach coupled with ecologist expert input enables students
to develop stakeholder networks (dataset networks) in the CAD environment (Rhinoceros and
Grasshopper).

 Deliverable 5.4 Version 2

 Page 47

Fig. 19: Example of student work focused on the translational process, correlating maps with
networks to derive input for the generative process (Ecolopes Studio Kindergarten Liesing,
winter semester 2021-22, students: Juliana Schuch & Filip Larsson).

Fig. 20: Example of student work focused on the translational process, configuring networks
of stakeholder relations and interactions (left) and placing stakeholder related provision
networks on site (Ecolopes Studio Kindergarten Liesing, winter semester 2021-22, student:
Victoria Nemeth).

To facilitate students with the necessary knowledge and methods for the generative process,
it was necessary to introduce purpose and concepts concerning design variety generation
(Rittel, 1970), as well as analysing, benchmarks, and ranking multiple design outputs. This was

 Deliverable 5.4 Version 2

 Page 48

provided through lectures, seminars, and discussions. Furthermore, design outputs (spatial
organisation, geometric articulation) needed to be generated, evaluated, and further
developed based on research-through-design, that is project-based design, in the studio. Most
students did not reach the point of learning and utilising more advanced software tools to
facilitate a generative computational design process. However, some students with more
advanced software skills did employ some existing algorithmic processes for this purpose. In
follow-up studios this part of the generative process will be more foregrounded.

Fig. 21: Example of student work focused on step-by-step process for spatial organisation
through distribution of architectural, biomass and soil volumes for design case 1 (Ecolopes
Studio Nordbahnhof Freie Mitte, winter semester 2022-23, students: Vera Neulinger & Ela
Trojar).

Fig. 22: Example of student work focused on spatial organisation through distribution of
architectural, biomass and soil volumes for design case 2. This study included comparative
analysis of volume ratios of current state-of-the-art green architectures to derive benchmarks
for the design generation (Ecolopes Studio Nordbahnhof - Freie Mitte, winter semester 2022-
23, students: Julie Doyen & Blandine Seguin).

 Deliverable 5.4 Version 2

 Page 49

Fig. 23: Design based on the volume distribution shown in Figure 20 (Ecolopes Studio
Nordbahnhof Freie Mitte, winter semester 2022-23, students: Julie Doyen & Blandine Seguin).

Since most computational components are still under development, the students were not
yet introduced to the EIM Ontologies, use of the ECOLOPES Voxel Model and ecolopes specific
algorithmic processes. Nevertheless, students were taught, explored, and helped further
develop the conceptual approach that underlies the ontology-aided generative computational
design approach. Our team documented the studio work and is in the process of preparing
two books, to be published by TU Wien, on the projects for the two different sites. We
evaluated each student's work in terms of evidence of comprehension of the approach (also
in the context of grading the work), as well as possible contributions to the further
development of the ECOLOPES approach. In forthcoming studios, we aim to introduce student
questionnaires to obtain detailed student feedback, pending on approval by the TU Wien
ethics committee, to be used for validating the teaching approach.

Figures 24 to 22 summarily display the structure and content of the teaching plan for one
semester. Figure 24 shows the selected teaching activities for the winter semester 2022-23.
This includes lectures, workshops, discussions, and presentations of studio work. Figure 25
shows how the teaching content is organised as a series of different teaching activities. Figure
26 shows how the teaching activities and topics are laid out as a semester plan. Figure 27
shows a revised semester plan that is informed by the evaluation of learning process and
outcomes.

 Deliverable 5.4 Version 2

 Page 50

Fig. 24: Teaching activities selected for the ECOLOPES Design Studio, including lectures,
workshops, discussions, and presentations of student work (presented by Tina Selami and Asst.
Prof. Dr. Milica Vujovic at INTECOL2022 Congress in Geneva, Switzerland, 28.08.-02.09. 2022).

 Deliverable 5.4 Version 2

 Page 51

Fig. 25: Teaching topics (left column) and allocated types of teaching activities selected for the
ECOLOPES Design Studio (presented by Tina Selami and Asst. Prof. Dr. Milica Vujovic at
INTECOL2022 Congress in Geneva, Switzerland, 28.08.-02.09. 2022).

 Deliverable 5.4 Version 2

 Page 52

Fig. 26: Semester schedule from the ECOLOPES Design Studio (winter semester 2022-23)
showing how teaching methodology aligns with design methodology (presented by Tina
Selami and Asst. Prof. Dr. Milica Vujovic at INTECOL2022 Congress in Geneva, Switzerland,
28.08.-02.09. 2022).

Fig. 27: Revised timeline of the semester schedule for the following semester. Revisions are
based on evaluation of the learning process informed by discussions with students, as well as
on evaluation of learning outcomes by the teaching team (presented by Tina Selami and Asst.
Prof. Dr. Milica Vujovic at INTECOL2022 Congress in Geneva, Switzerland, 28.08.-02.09. 2022).

 Deliverable 5.4 Version 2

 Page 53

Furthermore, TU Wien’s research department for Digital Architecture and Planning (Prof.
Hensel) and the research department for Three-dimensional Design and Model Making (Prof.
Kern) offered an Ecolopes master thesis project focused on a Sculpture Museum for the
Wienerberg site in Vienna that was asked to integrate and / or foreground the ECOLOPES
approach. Two master thesis projects have been completed in 2023. This includes the
“nARTure - Sculpture Museum Wienerberg” project by Livia Dirnböck (see Appendix 3) and
the “Museum Metamorphosis” project by Agnes Henzinger. The first project has already been
published by TU Wien. The second project is currently in preparation for publication. Further
calls for Ecolopes master thesis projects are currently in preparation.

Thus far, only two master thesis projects have been completed. However, their difference in
terms of conceptual approach to the Ecolopes topic is notable. The first master thesis
foregrounds the program of the sculpture museum, while intensively integrating the Ecolopes
approach. The second project uses the Ecolopes approach as an opportunity to fundamentally
rethink the way in which a museum can be thought of based on an Ecolopes perspective. This
suggests that the Ecolopes approach can be robust enough to underpin significantly different
approaches to architectural design, ranging from directly applied to fundamentally
transformative perspectives. This is a useful insight when evaluating the robustness of
ECOLOOPES in a practice context, in which different practices have different approaches to
planning and design.

4 FURTHER DEVELOPMENT STEPS

In this section, we address open questions pertaining to the advancement of the algorithms
utilised in the ECOLOPES Computational Model. As described above we pursue a two-stage
development of the ECOLOPES Computational Model, i.e., the selected algorithms that
underlie and facilitate the ECOLOPES Computational Model. Stage 1 describes the level that
will be technically implemented at the end of the project. This stage entails no additional
algorithmic process in Loop 1. In stage 1 an Answer Set Programming (ASP) algorithm will be
implemented for Loop 2 and for Loop 3. Stage 2 of the deliverable comprises a conceptual
development focused on utilising an ASP algorithm also for Loop 1, as well as a conceptual
outline for extending Loop 2 and Loop 3 with a Genetic Algorithm (GA) and a Machine Learning
(ML) algorithm (K-means). Stage 2 will not reach full technical resolution and implementation
yet provides a prepared approach for future development of the ontology-aided generative
computational design process.

4.1 Open Questions and Next Steps

As outlined above, stage 1 of the development process of the ECOLOPES Computational Model
entails the technical development and implementation of ASP algorithms for the generative
aspects of the ontology-aided generative computational process, namely Loop 2 (spatial
organisation) and Loop 3 (geometric articulation). Open Questions and next steps include:

 Deliverable 5.4 Version 2

 Page 54

1. For Loop 2 - Spatial Organisation (dataset volumes): The extension of Moore
system to the system with diagonals (Orciuoli et al, 2017), i.e., for each volume,
not only addressing up, below, left, or right, but also diagonals and including
those in the ASP constraints and rules.

2. For Loop 3 - Geometric Articulation (dataset landform): To what extent do we
need to abstract the representation of a building so that we can reason
effectively with ASP?

Stage 2 of the development process of the ECOLOPES Computational Model entails the
conceptual development of an ASP algorithm for the translational process (Loop 1) and GA
and ML algorithms for the generative process (Loop 2 and Loop 3). This stage will not reach
full technical development and implementation. Instead, this stage will clearly point towards
future development steps. Open Questions and next steps include:

1. What are suitable strategies for integrating ASP with GA and ML (K-means)
algorithms to leverage their complementary strengths and improve overall
design optimisation?

2. How can the outcomes of ASP reasoning be utilised as constraints or objectives
in the Genetic Algorithm, enabling the GA to generate design solutions that
align with logical rules derived from the EIM Ontology and knowledge graph?

3. How to incorporate domain-specific knowledge and constraints into the fitness
evaluation function of the GA to ensure ecologically informed and feasible
design solutions?

4. How can ML (K-Means) algorithms be optimised to handle high-dimensional
and heterogeneous voxel model data efficiently, while considering various
distance metrics and clustering evaluation techniques?

5. What techniques can be employed to integrate the results of K-Means
clustering into the ASP reasoning process, allowing the ASP algorithm to reason
over identified clusters and their implications on the design constraints and
objectives?

The next step in advancing the interface between the EIM Ontology include:

1. Developing a robust and scalable framework for mapping and integrating voxel
model data into the EIM Ontology, considering the differences in data
structures, granularity, and representation approaches. This involves designing
efficient algorithms and methods for transforming voxel-based representations
into ontology-based formats, ensuring semantic interoperability and data
consistency.

2. Extending the EIM Ontology to incorporate domain-specific concepts and
relationships related to the voxel model, such as environmental conditions,
building performance metrics, material properties, and design constraints. This
step involves collaborating with domain experts to identify relevant ontology
extensions and ensuring the ontology adequately captures the necessary
knowledge for voxel model analysis and decision-making processes.

 Deliverable 5.4 Version 2

 Page 55

3. Enhancing the interface's querying and reasoning capabilities through ASP
techniques. This involves developing ASP-based modules that enable complex
reasoning tasks, such as spatial reasoning, constraint satisfaction, and
optimisation, allowing users to explore and analyse voxel model data in a more
nuanced manner.

The Vienna Case Study, which will be conducted from October 2023 to the end of January
2024. Subsequently, it will be necessary to evaluate the soundness of the design output, and
the extent of generalisability of the design process and design outputs.

Validation of the components developed as part of EIM Ontology, ECOLOPES Voxel Model and
the ECOLOPES Computational Model will be executed in parallel to the development of the
individual components. This validation will be running along with the Vienna Case Study and
the integration between the different components will be tested utilising data created as a
part of this design experiment.

4.2 Intended Development Stage at the End of the Project

As outlined above, we pursue a two-stage development process. Stage 1 describes the level
that will be technically implemented at the end of the project (TRL 4). This stage has no
additional algorithmic process in Loop 1. For both Loop 2 and for Loop 3 an ASP algorithm will
be implemented and developed to meet TRL 4 requirements.

Stage 2 comprises a conceptual development focused on utilising an ASP algorithm for Loop
1, as well as a conceptual outline for extending Loop 2 and Loop 3 with a GA and a ML
algorithm (see Appendix 1 and Appendix 2). Stage 2 will not reach full technical resolution at
TRL 4. However, it will provide a prepared approach for future development of the ontology-
aided generative computational design process.

4.3 Technology Readiness Level

The research outcomes presented in this report are based on software implementation of
currently alpha versions of parts of the ECOLOPES Computational Model that were tested
internally by the development team. The researchers that were involved in the development
are continuously evaluating the implemented functionalities.

ECOLOPES Computational Model components that are required to reach TRL 4 are the ASP
algorithms for design generation in Loop 2 (spatial organisation) and Loop 3 (geometric
articulation). The ASP algorithm for Loop 1 and the GA and ML algorithms for Loop 2 and Loop
3 will only be conceptually developed and to a lesser extent technically developed and are not
expected to reach TRL 4.

To check the effectiveness of algorithms and the required TRL it is necessary to ensure that
the set of solutions returned are sound and, to a large degree, complete. Hence, we are going
to compute the F-measure comparing the returned set from the algorithms in different loops

 Deliverable 5.4 Version 2

 Page 56

against a golden dataset that was annotated by the designer experts describing the expected
solutions for a particular input.

According to the TRL self-assessment tool implemented as a part of the BRIDGE2HE H2020
project (TRL Assessment | NCP Portal Management | Horizon Europe NCP Portal, 2022), the
pursued level of technological advancement is representative of TRL 4.

4.4 Adherence to FAIR Principles

To adhere to the FAIR principle and promote research reproducibility, datasets produced
during this study will be published in one of the most recognizable open access data
repositories. According to the practices observed in the field, the Zenodo repository
(European Organization For Nuclear Research & OpenAIRE, 2013) has been identified as a
repository that promotes discoverability of datasets published in the field of architectural
design. We will publish the ECOLOPES Computational Model in the ECOLOPES GitLab
repository which will be made public. This will enable tracking of changes between versions
and feedback by the community to indicate "Issues" that need to be resolved. The effort
related to ensuring data interoperability has been initiated as a part of the data exchange
functionality required for the integration of the ECOLOPES Computational Model data with
the key components of the ontology-aided generative computational design process, that is
the design generation environment.

5 PUBLICATION PLAN

We recently submitted a scientific article for peer-review to Frontiers of Architectural
Research journal that focuses on the conceptual framework for an ontology-aided generative
computational design process for ecological building envelopes. In the article we describe the
conceptual approach and the development of the related components of the ontology-aided
generative computational design process (EIM Ontologies, ECOLOPES Voxel Model, ECOLOPES
Computational Model).

A second scientific article will focus specifically on the development and utilisation of the
ECOLOPES Computational Model and algorithmic processes in the context of an ontology-
aided generative computational design process for ecological building envelopes.

A third scientific article will focus on the technical elaboration of the ECOLOPES Computational
Model / Algorithmic Processes from a computer science perspective.

A fourth scientific article will focus on the validation of the ECOLOPES ontology-aided
generative computational design process for ecological building envelopes that will report the
results of the Vienna Case Study and include other validation approaches and aspects
regarding the ECOLOPES Computational Model.

 Deliverable 5.4 Version 2

 Page 57

REFERENCES

Alahuhta, J., Ala-Hulkko, T., Tukiainen, H., Purola, L., Akujärvi, A., Lampinen, R. and Hjort, J.

(2018). The role of geodiversity in providing ecosystem services at broad scales. Ecological
Indicators, 91, 47-56. https://doi.org/10.1016/j.ecolind.2018.03.068

Balaraman, V., Razniewski, S., & Nutt, W. (2018). Recoin: Relative Completeness in Wikidata. In

P.-A. Champin, F. Gandon, M. Lalmas, & P. G. Ipeirotis (Eds.), Companion of the The Web

Conference 2018 on The Web Conference 2018, {WWW} 2018, Lyon, France, April 23-27, 2018

(pp. 1787-1792). ACM.

Brazier, V., Bruneau, P.M.C., Gordon, J.E., and Rennie, A.F. (2012). Making Space for Nature in a

Changing Climate: The Role of Geodiversity in Biodiversity Conservation. Scottish Geographical
Journal, 128(3-4), 211-233. https://doi.org/10.1080/14702541.2012.737015

Frayling, C. (1993) Research in Art and Design. Royal College of Art Research Papers, 1(1), 1-5.

Hensel, M., & Bier, H.H. (Eds.) (2022) Interdisciplinary Data-integrated Approaches. Spool 9(1).

https://doi.org/10.47982/spool.2022.1.00

Jasiewicz, J., & Stepinski, T.F. (2013) Geomorphons - a pattern recognition approach to classification

and mapping of landforms. Geomorphology, 182, 147-156.

https://doi.org/10.1016/j.geomorph.2012.11.005

Lenzholzer, S., Duchart, I., & Koh, J. (2013) ‘Research-through-designing’ in landscape architecture.

Landscape and Urban Planning, 113, 120-127.

https://doi.org/10.1016/j.landurbplan.2013.02.003

Lifschitz, V. (2002) Answer set programming and plan generation. Artificial Intelligence,

138(1–2), 39-54. https://doi.org/10.1016/S0004-3702(02)00186-8

Loussaief, S., & Abdelkrim, A. (2018). Convolutional neural network hyper-parameters

optimization based on genetic algorithms. International Journal of Advanced Computer Science and
Applications, 9(10). https://doi.org/10.14569/IJACSA.2018.091031

Makki, M., Showkatbakhsh, M., Tabony, A., & Weinstock, M. (2019). Evolutionary algorithms for

generating urban morphology: Variations and multiple objectives. International Journal of
Architectural Computing, 17(1), 5-35. https://doi.org/10.1177/1478077118777

Mueller, E.T. (2015) Commonsense Reasoning (2nd ed.). Morgan Kaufmann.

Orciuoli, F., Parente, M. (2017) An ontology-driven context-aware recommender system for indoor

shopping based on cellular automata. Journal of Ambient Intelligence and Humanized Computing,
8, 937–955. https://doi.org/10.1007/s12652-016-0411-2

https://doi.org/10.1016/j.ecolind.2018.03.068
https://doi.org/10.1080/14702541.2012.737015
https://doi.org/10.47982/spool.2022.1.00
https://doi.org/10.1016/j.geomorph.2012.11.005
https://doi.org/10.1016/j.landurbplan.2013.02.003
https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.1016/S0004-3702(02)00186-8
https://doi.org/10.14569/IJACSA.2018.091031
https://doi.org/10.1177/1478077118777236
https://doi.org/10.1007/s12652-016-0411-2

 Deliverable 5.4 Version 2

 Page 58

Rogers, P.A., & Yee, J. (2015) The Routledge Companion to Design Research. Routledge.

Sackett, D. L., Rosenberg, W. M., Gray, J. A., Haynes, R. B., & Richardson, W. S. (1996) Evidence-

based medicine: What it is and what it isn't. British Medical Journal, 312(7023), 71–72.

https://doi.org/10.1136/bmj.312.7023.71

Stichler, J.F. (2010) Weighing the Evidence. HERD: Health Environments Research & Design
Journal, 3(4), 3-7. https://doi.org/10.1177/19375867100030

Sunguroğlu Hensel, D., Tyc, J., & Hensel, M. (2022) Data-driven Design for Architecture and

Environment Integration: Convergence of data-integrated workflows for understanding and

designing environments. Spool, 9(1), 19-34. https://doi.org/10.47982/spool.2022.1.02

Tukiainen, H., Kiuttu, M., Kalliola, R., Alahuhta, J., and Hjort, J. (2019). Landforms contribute to

plant biodiversity at alpha, beta, and gamma levels. Journal of Biogeography, 46(8), 1699-1710.

https://doi.org/10.1111/jbi.13569

Tukiainen, H., Maliniemi, T., Alahuta, J., Hjort, J., Lindholm, M., Salminen, H., Snåre, H., Toivanen,

M., Vilmi, A., and Heino, J. (2022). Quantifying alpha, beta and gamma geodiversity. Progress in
Physical Geography: Earth and Environment, 47(1), 140-151.

https://doi.org/10.1177/03091333221114714

Vernham, G., Bailey, J.J., Chase, J.M., Hjort, J., Field, R., and Schrodt, F. (2023). Understanding trait

diversity: the role of geodiversity. Trends in Ecology & Evolution, 38(8), 736-748.

https://doi.org/10.1016/j.tree.2023.02.010

Vlay, B., Streeruwitz, L., Käfer, A., Horvath, K., Wagner, S., Grasz, W., Bava, H., Schomakers, K.,

Stadler, A., Madreiter, A., Silvestri, B., Geier, S., Homeier, I., Hartmann, S., & Raimund, H. (2015).

Freie Mitte—Vielseitiger Rand. Handbuch zum städtebaulichen Leitbild Nordbahnhof. Magistrat
der stadt Wien. Magistratsabteilung 21 – Stadtteilplanung und Flächennutzung.
https://www.wien.gv.at/stadtentwicklung/projekte/nordbahnhof/grundlagen/leitbild-

2014/pdf/handbuch-gesamt.pdf

Weisser, W., Hensel, M., Barath, S., Grobman, Y.J., Hauck, T.E., Joschinski, J., Ludwig, F., Mimet,

A., Perini, K., Roccotiello, E., Schloter, M., Shwartz, A., Sunguroğlu Hensel, D., Vogler, V. (2022)

Creating ecologically sound buildings by integrating ecology, architecture, and computational

design. People & Nature, 5(1), 4-20. https://doi.org/10.1002/pan3.10411

https://doi.org/10.1136/bmj.312.7023.71
https://doi.org/10.1177/193758671000300401
https://doi.org/10.47982/spool.2022.1.02
https://doi.org/10.47982/spool.2022.1.02
https://doi.org/10.1111/jbi.13569
https://doi.org/10.1177/03091333221114714
https://doi.org/10.1016/j.tree.2023.02.010
https://www.wien.gv.at/stadtentwicklung/projekte/nordbahnhof/grundlagen/leitbild-2014/pdf/handbuch-gesamt.pdf
https://www.wien.gv.at/stadtentwicklung/projekte/nordbahnhof/grundlagen/leitbild-2014/pdf/handbuch-gesamt.pdf
https://doi.org/10.1002/pan3.10411
https://doi.org/10.1002/pan3.10411

 Deliverable 5.4 Version 2

 Page 59

APPENDIX 1: INITIAL GENERATIVE ALGORITHM CODE

In appendix 1 we include an initial general version of code for the type of GA we envision for
the stage 2 development, which will not reach full technical implementation at the required
TRL.

Stage 2 of the development focuses on a conceptual level on the utilisation of a GA to enhance
Loop 2 and Loop 3 of the ontology-aided computational generative design process. GAs are
based on principles of evolutionary computation to iteratively generate and refine design
solutions (Makki et al, 2019). GAs operate on a population of candidate solutions represented
as individual outputs. The GA initialises a population of diverse and randomly generated
individuals, representing an initial set of potential design solutions for spatial organisation, in
this case volume distributions. The optimisation process takes place through a series of
iterative generations. In each generation, a selection process is performed, where individuals
with higher fitness scores, indicating better design performance, are favoured for
reproduction. The reproduction phase involves the application of genetic operators, such as
crossover and mutation. Crossover involves the exchange of genetic information between
selected individuals to create offspring with a combination of their parent's characteristics
(Loussaief and Abdelkrim, 2018). Mutation introduces random changes to individual
“chromosomes” to maintain diversity and prevent premature convergence to suboptimal
solutions. Mutation enables exploration of uncharted regions of the design space, potentially
uncovering novel solutions. The iterative nature of the Genetic Algorithm makes it possible to
continually evolve the population over multiple generations. This evolutionary process
encourages eventual convergence towards design solutions that exhibit desirable attributes.

 Deliverable 5.4 Version 2

 Page 60

Fig 12: The workflow describing the designer input and the interaction with the respective
algorithms in different loops via GraphDB, ASP constraints and rules and Genetic Algorithm.

Description of the technical link between ASP constraints and rules and the initialisation of the
GA Workflow:

ASP deployed in Loop 2 and Loop 3 has a central role in defining logical constraints, spatial
considerations, and rule-based criteria for developing design solutions. These constraints and
rules take shape in response to project specific design objectives and ecological benchmarks,
and architectural limitations contained in the EIM ontologies. In Loop 2, ASP has an important
role in shaping constraints and rules derived from project specific design objectives, ecological
criteria, and architectural constraints outlined in the EIM ontology. In Loop 2 we process the
data from GraphDB that undergoes a step-by-step validation process against ASP constraints
and rules before being transitioned into the GA initialization step. The data from GraphDB is
typically represented as structured graph data. The data is stored in nodes and edges, where
nodes represent entities (e.g., objects, concepts) and edges represent relationships between
these entities. The data we acquire is encoded in RDF format. In Loop 3, a similar technical
connection between ASP and GA occurs with a focus on geometric articulation. Starting from
Loop 3, at a step where data is validated against ASP constraints and rules which involves
having already generated landform data, this data flows directly into the main GA loop instead
of GA first step initialization phase.

The first step is to retrieve relevant data from GraphDB. This data typically includes
information about architectural elements, ecological criteria, design objectives, and any other
project-specific data that is created via OWL. ASP constraints and rules are based on project-
specific requirements. These constraints and rules are expressed in a formal logic language
compatible with ASP. The data retrieved from GraphDB is then subjected to the ASP validation
process. This process involves running the ASP solver with the formulated constraints and
rules and the retrieved data as input. The ASP solver performs logical reasoning to determine
if the data complies with the defined constraints and rules. The ASP solver generates output
that includes answer sets. These answer sets represent valid configurations or solutions that
satisfy the constraints and rules. If the data from GraphDB is consistent with the ASP
constraints and rules, one or more answer sets will be generated. If conflicts are identified
between the data and ASP constraints/rules, further data refinement may be necessary. This
could involve adjusting the data to meet the constraints or revising the constraints
themselves.

Once the data has successfully passed the ASP validation process, it is transitioned via Python
language libraries to the GA initialization step in a format that the GA Algorithm can work with.
The validated data is encoded into a format suitable for the Genetic Algorithm. This format
could be a binary encoding or any other representation that maps the data to genetic
parameters used by the GA. In the GA initialization step, we have created a function which
initialised a population of design candidates. This population represents potential solutions to
the design problem. The Genetic Algorithm is configured with parameters such as population

 Deliverable 5.4 Version 2

 Page 61

size, mutation rate, and the number of generations. These parameters control how the GA
will evolve the initial population over successive generations.

The provided code represents the development stage of GA designed for the project
specification. The GA aims to solve the problem by using a set of parameters that determine
the assignment of data points to different classes. The GA code begins by importing the
necessary libraries for data processing, handling, visualisation, and GA tasks. These libraries
include NumPy for numerical operations, pandas for data handling, Matplotlib and Seaborn
for data visualisation, and scikit-learn for data splitting and preprocessing.

The GA code sets several constants to define the problem and configure the genetic algorithm.
The generate_individual function is defined to create an initial individual (a possible solution)
for the genetic algorithm. It generates random values to assign data points to different classes.
The generate_population function creates a population of random solutions by calling the
generate_individual function multiple times. The calculate_fitness function computes the
fitness of an individual within the population. It evaluates how well the individual's assignment
of data points matches the target class counts. The goal is to minimise this fitness value. The
tournament_selection function implements tournament selection, a mechanism for selecting
individuals from the population based on their fitness. It randomly samples a subset of
individuals (tournament size k) and selects the one with the lowest fitness. The crossover
function performs a crossover between two parents to create a child. It selects a random
crossover point and combines the genetic information of the parents to produce a new
solution.

The mutate function introduces random mutations to an individual with a specified mutation
rate. It iterates through the individual and assigns random class values to some data points.
The main genetic_func manages the genetic algorithm. It initialises a population, evolves it
over multiple generations, and tracks the best solution found. In each generation, it selects
parent individuals through tournament selection, performs crossover to create new
individuals, and applies mutation. In the main part of the GA code, parameters such as
population size and mutation rate are defined.

The technical validation process takes place throughout the step-by-step development of the
GA code to ensure functionality and effectiveness in training, testing, and validating the
algorithm. In the training phase the GA learns and adapts to the underlying patterns and
characteristics of the dataset. The training phase is validated by assessing GA’s convergence
by computing L1 and L2 regularisation (Type 1 and Type 2).(l1_error_regular=
np.mean(np.abs(predicted_val-ground_truth))) and (l2_error =

np.mean((predicted_val - ground_truth) **2). These types of errors are
the validation criteria applied.

In the Testing phase we focus on evaluation of the GA's performance under controlled
conditions. We use Python language libraries to check if the machine has learned or not. The
testing step works well with the training data. In the testing phase, validation is achieved by
evaluating the GA's predictive accuracy through a comparison of its output with the ground

 Deliverable 5.4 Version 2

 Page 62

truth data, using necessary metrics. F1_score_measuring =

accuracy_score(predictedval-

groundtruth);precision=precision_score(predictedval-

groundtruth);recall=recall_score(predictedval-

groundtruth.Comparing the expected output with ground truth is the criteria for the
testing validation.

In the validation phase the GA's performance is rigorously assessed against predefined
criteria. Here, the GA's performance undergoes a rigorous assessment against predefined
criteria. The focus lies on confirming the correctness of the training phase. This validation
process entails a thorough comparison of the GA's output with the designers' expectations,
made possible by Python language libraries that enable accurate comparisons. We use 10%
of the dataset for validation (validation_ratio = 0.1). For the validating process

we use metrics (from sklearn.metrics import accuracy_score,

precision_score, recall_score, f1_score) that include accuracy, precision,

recall, F1-score. The aim is to quantitatively assess the GA's performance and verify that it
meets the defined project objectives.

The code listed below will be further developed in custom visualisation and analysing the
output. The visualisation steps will be convergence plots which show how the
efficiency or quality of the process improves over generations. Track key process parameters,
such as cycle time or defect rate, against the number of iterations, population density
will be In the context of ecological modelling, use population diversity visualisations to
illustrate how different species' populations change over time, performance metrics
plot which plot performance metrics like sensitivity and specificity over iterations. Monitor

how the GA improves accuracy; and analyzing the output will be such steps like
statistics that will show GA-driven recommendations,and comparison step which
will compare all the related solution and choose the best output, predictive solutions

which will analyse GA-generated solutions that predict failures in the model, these solutions
will involve monitoring the model overtime to catch any faults.

The initial version of code for the GA is configured as described below:

Here we import the necessary libraries

Here we import the necessary library for generating random numbers

import random

Here we import the necessary library for data processing

import numpy as np

Here we import the necessary library for data handling

import pandas as pd

Here we import the necessary library for data visualisation

import matplotlib.pyplot as plt

 Deliverable 5.4 Version 2

 Page 63

Here we import the necessary library for enhanced data visualisation

import seaborn as sns

Here we import the necessary library for data splitting

from sklearn.model_selection import train_test_split

Here we import the necessary library for data preprocessing

from sklearn.preprocessing import StandardScaler

Here we import the necessary metrics

from sklearn.metrics import confusion_matrix, accuracy_score,

classification_report

Constants for the problem definition and genetic algorithm configuration

This is the size of the x-axis of the 3D matrix

X_SIZE = 27

This is the size of the y-axis of the 3D matrix

Y_SIZE = 9

This is the size of the z-axis of the 3D matrix

Z_SIZE = 3

This is the number of classes in the problem

NUM_CLASSES = 4

This is the number of human samples in the dataset

HUMAN_COUNT = 107

This is the number of animal samples in the dataset

ANIMAL_COUNT = 46

This is the number of plant samples in the dataset

PLANTS_COUNT = 40

This is the number of microbiota samples in the dataset

MICROBIOTA_COUNT = 3

This is the names of the classes in which we define the names of the classes

that we want to classify our data into

class_names = ['human', 'animal', 'plants', 'microbiota']

This is a function in which we generate an initial individual (possible

solution)

def generate_individual():

 Deliverable 5.4 Version 2

 Page 64

#This is a ternary operator that returns the random values for the classes

that we want to classify our data into

return [random.randint(0, NUM_CLASSES - 1) for _ in range(X_SIZE * Y_SIZE *

Z_SIZE)]

This is a function that generates a population of random solutions to the

problem

def generate_population(size):

#Here we return the random values with a for loop using the range function

return [generate_individual() for _ in range(size)]

#This is a function that calculates the fitness of the individual in the

population

def calculate_fitness(individual):

#Here we assign the class counts to the individual in the population using

for loop and range function

class_counts = [individual.count(i) for i in range(NUM_CLASSES)]

#Here we assign the fitness using for loop and range function by taking the

sum of the absolute difference between the class counts and the target counts

fitness = sum(abs(class_counts[i] - target_counts[i]) for i in

range(NUM_CLASSES))

Here we return the fitness

return fitness

This is a function in which we select an individual from the population

using tournament selection

def tournament_selection(population, k=5):

Here k is the tournament size we assign it to selected

selected = random.sample(population, k)

#Here we return the minimum value of the selected individuals using the key

function and the calculate fitness function

return min(selected, key=calculate_fitness)

This is a function in which we perform crossover between two parents to

create a child

def crossover(parent1, parent2):

#Here we assign the crossover point to the random value of the length of the

parent1 using the randint function from the random module

crossover_point = random.randint(0, len(parent1) - 1)

 Deliverable 5.4 Version 2

 Page 65

#Here we assign the child to the parent1 and parent2 using the crossover

point

child = parent1[:crossover_point] + parent2[crossover_point:]

#Here we return the child

return child

#Here we define the mutate function with the individual and mutation rate as

parameters

def mutate(individual, mutation_rate):

#Here we iterate through the individual using for loop and range function to

mutate the individual

for i in range(len(individual)):

#Here we assign the individual to the random value of the NUM_CLASSES using

the randint function from the random module

individual[i] = random.randint(0, NUM_CLASSES - 1)

#This is a function in which we define the genetic algorithm with the

population size, generations and mutation rate as parameters

def genetic_algorithm(population_size, generations, mutation_rate):

#Here we assign the population to the generate population function with the

population size as a parameter

population = generate_population(population_size)

Here we assign the best solution to None

best_solution = None

Here we assign the best fitness to infinity

best_fitness = float('inf')

#Here we iterate through the generations and evolve the population each time

with for loop

for _ in range(generations):

Here we assign the new population to an empty list

new_population = []

Here we use for loop to iterate through the generations

for _ in range(population_size // 2):

Here we assign the parent1 to the tournament_selection function

parent1 = tournament_selection(population)

Here we assign the parent2 to the tournament_selection function

 Deliverable 5.4 Version 2

 Page 66

parent2 = tournament_selection(population)

Here we assign the child1 to the crossover function with the parent1 and

parent2 as parameters

child1 = crossover(parent1, parent2)

Here we assign the child2 to the crossover function with the parent2 and

parent1 as parameters

child2 = crossover(parent2, parent1)

#Here we mutate the child1 with the mutation rate as a parameter

mutate(child1, mutation_rate)

#Here we mutate the child2 with the mutation rate as a parameter

mutate(child2, mutation_rate)

#Here we extend the new population with the child1 and child2 using the extend

function

new_population.extend([child1, child2])

Here we assign the population to the new population

population = new_population

Here we use for loop to iterate through the population

for individual in population:

Here we assign the fitness to the calculate fitness function with the

individual as a parameter

fitness = calculate_fitness(individual)

Here we use if statement to check if the fitness is less than the best

fitness

if fitness < best_fitness:

Here we assign the best solution to the individual

best_solution = individual

Here we assign the best solution to fitness

best_fitness = fitness

Here we return the best solution

return best_solution

This is the Main function, here we run the program to test the genetic

algorithm

if __name__ == '__main__':

 Deliverable 5.4 Version 2

 Page 67

Here we assign the population size to 50

population_size = 50

Here we assign the mutation rate to 0.1

mutation_rate = 0.1

Here we assign the target counts to the human count, animal count, plants

count and microbiota count and best solution to the genetic algorithm function

with the population size, generations and mutation rate as parameters

target_counts = [HUMAN_COUNT, ANIMAL_COUNT, PLANTS_COUNT, MICROBIOTA_COUNT]

best_solution = genetic_algorithm(population_size, generations,

mutation_rate)

Here we print the best solution

print("Best solution:", best_solution)

 Deliverable 5.4 Version 2

 Page 68

APPENDIX 2: ML CODE

In appendix 2 we include an initial version of code for the type of ML we envision for the stage
2 development, which will not reach full technical implementation at the required TRL.

The employment of an ML (K-means) algorithm serves to further enhance Loop 2 (spatial
organisation) and Loop 3 (geometric articulation) of the ontology-aided generative
computational design process. This algorithm utilises the output generated by the GA (see
Appendix 1), which consists of a set of design solutions that have undergone optimisation
based on the defined fitness function and design objectives. The ML algorithm aims at
spatializing the design data, allowing for the generation of cluster assignments that group
similar design elements together. The ML algorithm can generate cluster assignments based
on the voxel model data. This clustering serves to identify distinct spatial configurations and
patterns within the design output. By leveraging the K-means algorithm, designers can gain
insights into the spatial organisation of the design and identify coherent groupings of design
elements. The ML (K-means) algorithm enables the designers to explore and understand the
spatial relationships and clustering tendencies in the design data. The aim is the formation of
cohesive and well-defined clusters based on the underlying patterns in the design data. The
integration of the K-Means algorithm within the EIM Ontology framework opens up
possibilities for knowledge discovery and exploration.

Fig 13: Workflow describing the designer input and the interaction with the respective
algorithms in different loops via GraphDB, ASP constraints and rules, and Genetic Algorithm
with K-Means Machine Learning Algorithm.

 Deliverable 5.4 Version 2

 Page 69

Description of the technical link between the ML output and the initialisation of the ML (K-
means) workflow:

The technical link between K-means and the GA facilitates a seamless transition from data
clustering and validation to optimization and design solution generation. To link between GA
and K-Means clustering, Python libraries are used to streamline the transfer of data outputs
from the GA optimization process into the subsequent K-Means clustering analysis. The
relevant data is exported from the GA optimization phase and it is saved to a CSV file. Python
libraries such as “import GA_output” and “from output import data.csv” are
utilised. By employing these libraries, it is ensured that the data generated through the GA
optimization is readily accessible for further analysis within the K-Means framework. With the
data transferred from GA to K-Means, the machine learning analysis continues with data
transformation and diagnostic steps. This involves exploring and understanding the data to
make informed decisions during the clustering process. The crucial step in this phase is data
description and exploration. To facilitate this, various Python functions, including the
'transpose' function, which allows us to examine the data from multiple perspectives are used.

K-means is employed to group data points into clusters based on their similarity or proximity
in feature space in response to project-specific design objectives, ecological benchmarks, and
architectural limitations in the EIM ontologies. K-means, deployed in Loop 2 and Loop 3, has
a central role in clustering algorithm plays a crucial role in the workflow; a technical
connection between K-Means and GA occurs with a focus on geometric articulation,
contributing to the achievement of specific project objectives related to data analysis, pattern
recognition, and classification of the design solutions. In Loop 2, K-Means is vital in clustering
based on their feature space similarity. This clustering aligns with the project-specific design
objectives, ecological benchmarks, and architectural constraints defined in the EIM
ontologies.

In Both Loop 2 and Loop 3, the initial phase involves retrieving pertinent data from the GA
algorithm. This data typically includes information about architectural elements, ecological
criteria, design objectives, and any other project-specific data created via ASP data flowed
through GA, where it is processed. We are using the data from the output of the GA algorithm
which transitioned into the K-means initialization step using Python Language data transfer
libraries such as ga_output_data = pd.read_csv('ga_output.csv'). The data

extracted from the GA predominantly originates from its initial stage, where new design
solutions are generated, such as new_design = generate_population (param1,

param2). Each solution often represents a set of parameters or assignments derived from
the GA optimization process. The data from GA output is typically defined as structured CSV
data and saved in a format that Python can easily read. The data is newly generated populated
data, which is the best output for the design solution. Starting from Loop 3, at a particular
stage where data is being obtained, the main step is tournament =

compete_population (child, child2) for geometric articulation or further

optimization with the K-Means algorithm.

 Deliverable 5.4 Version 2

 Page 70

The provided K-Means code represents the development stage of ML designed for the project
specification. The K-Means aims to solve the problem by using a set of parameters and
learning techniques like gaussian_kernel (x, y, sigma=1.0) that determine the assignment of
data points to different classes. The K-Means code begins by importing the necessary libraries
such as from sklearn metrics. pairwise import pairwise_kernels, for data processing, handling,
visualisation, and K-Means tasks. These libraries include sklearn for finding the nearest
centroids, Matplotlib and Seaborn for data visualisation, and scikit-learn for data splitting and
pre-processing. The K-Means code defines several constants to configure the K-Means
algorithm and establish the problem's parameters. The init_method == "kmeans++"
function initialises centroids using the K-Means++ method, ensuring reproducibility in the
assignment of data points to different classes. The KMeans function creates classes and
clusters of random solutions by invoking the fit function multiple times. The k.fit
function calculates the fitness of an individual within the population, assessing the

alignment of the individual's data point assignments with the target class counts. The
objective is to maximise this fitness value. The K-Means function implements K-Means
clustering, a mechanism for partitioning data from the population based on their similarity.
The kernel in K-Means works efficiently to sample a subset of individuals (kernel size
k) and selects the one with the minimum distance.
The gaussian_kernel function computes the Gaussian kernel similarity between two

data points x and y. It's used to measure the similarity between data points in the kernel space.
Cluster assignments (labels) are initially assigned randomly to each data point. While
iteration cycles for a maximum of max_iters iterations or until convergence is reached. In
each iteration, the cluster centroids are updated. For each cluster i, the new centroid is
computed as the mean of the data points assigned to that cluster. The kernel matrix is
computed, where each element (i, j) represents the similarity between data points i
and j using the Gaussian kernel. Each data point is assigned to the cluster with the highest
similarity, as computed from the kernel matrix. The algorithm checks whether the cluster
assignments have changed. If not, it breaks out of the loop as convergence is reached.

The intended technical validation of the K-Means code involves in the first step data
preprocessing and exploration. In this phase, the code imports essential libraries, loads data
from a CSV file ('eco.csv') into a pandas import pandas as pd DataFrame, and

performs preliminary data cleaning by removing rows with missing values. It converts
categorical variables to numerical codes and performs one-hot encoding df_encoded =
pd.get_dummies(df, param1, param2) for certain columns related to weights and

species. Additionally, it handles missing values in specific columns by imputing them with the
column mean and deals with geospatial data by obtaining latitude and longitude information
using the geopy library. The next step focuses on K-means clustering. It selects the 'features'
feature_selector = SelectKBest(score_func= chi-squared= 4, k=4)
column for clustering, specifies the number of clusters, and initializes the KMeans model. The
model is fitted to the data model.fit(X,y), and cluster labels are added to the original
dataset. The code calculates the best score and provides insights into the clusters. Following
this, the code presents visualizations of the clustering results. It includes scatterplots
plt.scatter(x, y, c='blue', marker='o', label='Data Points')
displaying data points with cluster assignments, a scatterplot of cluster centers, and various

 Deliverable 5.4 Version 2

 Page 71

bar plots to visualize the distribution of features and species. Finally, the code showcases the
training history history = model.fit(X, y, epochs=50, verbose=1) of a
machine learning model which is model.compile_k-means(optimizer = 'sgd',
loss = 'mean_squared_error', metrics = ['mean_absolute_error'])
plotting accuracy and loss metrics over epochs.

The initial version of the ML code is configured as follows and will serve as a basis for further
project-specific development:

Here we import the necessary libraries

Here we import the pandas library for data analysis tools

import pandas as pd

Here we import the numpy library for numerical analysis tools

import numpy as np

Here we import the KMeans library for clustering

from sklearn.cluster import KMeans

Here we import the silhouette_score library for cluster evaluation

from sklearn.metrics import silhouette_score

Here we import the matplotlib library for data visualisation

import matplotlib.pyplot as plt

Here we import the seaborn library for data visualisation

import seaborn as sns

Here we import the warnings library to ignore warnings

import warnings

warnings.filterwarnings('ignore')

Here we import the os library to interact with the operating system

import os

Here we import the sys library to interact with the Python interpreter

import sys

Here we load the related data from the csv file into a pandas dataframe

data = pd.read_csv('eco.csv')

Here we print the sample of the input data

print("Sample of the input data:")

 Deliverable 5.4 Version 2

 Page 72

Here we display the first 5 rows of the data

print(data.head(5))

Here we display the last 5 rows of the data

print(data.tail(5))

Here we perform data cleaning here we drop any rows with missing values

data = data.dropna()

Here we reset the index of the dataframe

data = data.reset_index(drop=True)

Here we convert the 'features' column to a categorical variable

data['features'] = data['features'].astype('category')

Here we convert the categorical variable to numerical codes

data['features'] = data['features'].cat.codes

Here we display data exploration

print("\nData Exploration:")

Here we display the data types of each column

print(data.info())

Here we display some summary statistics for each column

print(data.describe())

create one-hot encoded columns for weights and species

one_hot_weights = pd.get_dummies(data['feature'], prefix='weights')

one_hot_species = pd.get_dummies(data['species'], prefix='species')

Here we concatenate the original data with the one-hot encoded columns

data = pd.concat([data, one_hot_weights, one_hot_species], axis=1)

Here we drop the original weights and species columns

data = data.drop(['feature', 'species'], axis=1)

Here we print the first few rows of the modified dataframe

print(data.head())

Here we convert the 'features' column to a categorical variable

data['Value.01_vol_class'] = pd.to_numeric(data['Value.01_vol_class'],

errors='coerce')

 Deliverable 5.4 Version 2

 Page 73

Here we fill any missing values with the mean of the column

data['Value.01_vol_class'].fillna(data['Value.01_vol_class'].mean(),

inplace=True)

Here we assign the data to the read csv function with the data as a parameter

and the delimiter to the tab

data['Value.box_x_min'] = pd.to_numeric(data['Value.box_x_min'],

errors='coerce')

Here we fill any missing values with the mean of the column

data['Value.box_x_min'].fillna(data['Value.box_x_min'].mean(),

inplace=True)

Here we convert the 'features' column to a categorical variable

data['Value.box_x_max'] = pd.to_numeric(data['Value.box_x_max'],

errors='coerce')

Here we fill any missing values with the mean of the column

data['Value.box_x_max'].fillna(data['Value.box_x_max'].mean(),

inplace=True)

Here we assign the data to pd to numeric function with the data as a

parameter and the errors to coerce to the tab

data['Value.box_y_min'] = pd.to_numeric(data['Value.box_y_min'],

errors='coerce')

Here we fill any missing values with the mean of the column

data['Value.box_y_min'].fillna(data['Value.box_y_min'].mean(),

inplace=True)

Here we assign the data to pd to numeric function with the data as a

parameter and the errors to coerce to the tab

data['Value.box_y_max'] = pd.to_numeric(data['Value.box_y_max'],

errors='coerce')

Here we fill any missing values with the mean of the column

data['Value.box_y_max'].fillna(data['Value.box_y_max'].mean(),

inplace=True)

Here we assign the data to pd to numeric function with the data as a

parameter and the errors to coerce to the tab

data['Value.box_z_min'] = pd.to_numeric(data['Value.box_z_min'],

errors='coerce')

Here we fill any missing values with the mean of the column

 Deliverable 5.4 Version 2

 Page 74

data['Value.box_z_min'].fillna(data['Value.box_z_min'].mean(),

inplace=True)

Here we assign the data to pd to numeric function with the data as a

parameter and the errors to coerce to the tab

data['Value.box_z_max'] = pd.to_numeric(data['Value.box_z_max'],

errors='coerce')

Here we fill any missing values with the mean of the column

data['Value.box_z_max'].fillna(data['Value.box_z_max'].mean(),

inplace=True)

Here we convert the 'features' column to a numeric variable

data['Value.box_volume'] = pd.to_numeric(data['Value.box_volume'],

errors='coerce')

Here we convert the 'features' column to a numeric variable

data['02_weights'] = pd.to_numeric(data['02_weights'], errors='coerce')

Here we fill any missing values with the mean of the column

data['02_weights'].fillna(data['02_weights'].mean(), inplace=True)

Here we convert the 'features' column to a numeric variable

data['01_vol_class'] = pd.to_numeric(data['01_vol_class'], errors='coerce')

Here we fill any missing values with the mean of the column

data['01_vol_class'].fillna(data['01_vol_class'].mean(), inplace=True)

Set the top 10 locations related to spatial data

new_data_set['location'] = data_set['location'].value_counts().index[:10]

Set the count of the top 10 locations related to spatial data

new_data_set['count'] = data_set['location'].value_counts().values[:10]

Here we assign the geolocator to the nominatim function with the user agent

as a parameter

geolocator = Nominatim(user_agent='geoapiExercises')

Here we set up rate limiting for geocoding requests

geocode = RateLimiter(geolocator.geocode, min_delay_seconds=0.5)

Initialize dictionaries for latitude and longitude

lat = {}

long = {}

 Deliverable 5.4 Version 2

 Page 75

Iterate through locations to get latitude and longitude

for i in new_data_set['location']:

 location = geocode(i)

 lat[i] = location.latitude

 long[i] = location.longitude

Add latitude and longitude columns to the DataFrame

new_data_set['latitude'] = new_data_set['location'].map(lat)

new_data_set['longitude'] = new_data_set['location'].map(long)

Create a map object and centre it to the a mean point

map = folium.Map(location=[10.0, 10.0], tiles='CartoDB dark_matter',

zoom_start=1.5)

Add circle markers for each location on the map

for i in range(len(new_data_set)):

 folium.CircleMarker([new_data_set.iloc[i]['latitude'],

new_data_set.iloc[i]['longitude']],

radius=5, color='red', fill=True).add_to(map)

Add circle markers with adjusted radius based on count

for _, r in new_data_set.iterrows():

 counts = r['count'] * 0.4 folium.CircleMarker([float(r['latitude']),

float(r['longitude'])],

radius=float(counts), color='lightcoral', fill=True).add_to(map)

Add title to the map

map.get_root().html.add_child(folium.Element(title))

Display the map

print(map)

Here we select the 'features' column for clustering

X = data[['features']]

Here we choose the number of clusters you want to identify

num_clusters = 4

Here we initialise the KMeans model with the chosen number of clusters

kmeans = KMeans(n_clusters=num_clusters, random_state=42)

Here we fit the model to the data

kmeans.fit(X)

 Deliverable 5.4 Version 2

 Page 76

Here we add cluster labels to the original dataset

data['cluster'] = kmeans.labels_

Here we calculate Silhouette score for the entire dataset

silhouette_avg = silhouette_score(X, kmeans.labels_)

Here we calculate the inertia

inertia = kmeans.inertia_

Here we print the number of clusters

print(f"\nNumber of clusters: {num_clusters}")

Here we print the silhouette score

print(f"Silhouette Score: {silhouette_avg}")

Here we print the inertia

print(f"Inertia (within-cluster sum of squares): {inertia}")

Here we print cluster centres and sizes

cluster_centers = kmeans.cluster_centers_

Here we print the cluster centres

cluster_sizes = np.bincount(kmeans.labels_)

Here we print the cluster sizes and details

print("\nCluster Details:")

Here we print the cluster details

for cluster_num, centre, size in zip(range(num_clusters), cluster_centers,

cluster_sizes):

Here we print the cluster number, centre, and size

print(f"Cluster {cluster_num}: Center: {centre}, Size: {size}")

Here we visualise the clusters, we set the figure size

plt.figure(figsize=(10, 6))

Here we set the style

sns.set(style='whitegrid')

Here we plot the clusters and parameters

 Deliverable 5.4 Version 2

 Page 77

sns.scatterplot(data=data, x='index', y='weights', hue='cluster',

palette='tab10', s=80)

Here we set the title

plt.title('K-Means Clustering of Features')

Here we set the x-axis label

plt.xlabel('Index')

Here we set the y-axis label

plt.ylabel('Features')

Here we set the legend title

plt.legend(title='Cluster')

Here we show the plot

plt.show()

Here we set the figure size

plt.figure(figsize=(8, 6))

Here we plot the cluster centres

plt.scatter(cluster_centers[:, 0], [0] * num_clusters, marker='X',

color='red', s=200, label='Cluster Centers')

Here we set the title

plt.title('Cluster Centers')

Here we set the x-axis label

plt.xlabel('Features')

Here we set the legend title

plt.legend()

Here we show the plot

plt.show()

Here we use another plot in which we specify the features and size.

plt.rcParams['figure.figsize'] = (10, 5)

Here we set the font size

plt.rcParams['font.size'] = 6

Here, we plot the countplot parameters

 Deliverable 5.4 Version 2

 Page 78

sns.countplot(x='feature', data=data)

Here we rotate the x-axis labels

plt.xticks(rotation=45)

Here we set the title

plt.title('Distribution of feature')

Here we use barplot for top 20 species

top_species = data['species'].value_counts().nlargest(20)

Here we set the figure size

plt.rcParams['figure.figsize'] = (12, 6)

Here we set the font size

plt.rcParams['font.size'] = 6

Here we set the layout

plt.tight_layout()

Here we plot the barplot parameters

sns.barplot(x=top_species.index, y=top_species.values)

Here we rotate the x-axis labels

plt.xticks(rotation=45)

Here we set the title

plt.title('Top 20 Species')

Here we set the figure size

plt.figure(figsize=(10, 6))

Here we set the style

sns.set(style='whitegrid')

Here we plot the clusters

sns.scatterplot(data=data, x='index', y='weights', hue='cluster',

palette='tab10', s=80)

Here we set the title

plt.title('K-Means Clustering of Features')

Here we set the x-axis label

plt.xlabel('Index')

 Deliverable 5.4 Version 2

 Page 79

Here we set the y-axis label

plt.ylabel('Features')

Here we set the legend title

plt.legend(title='Cluster')

Here, we display the plot

plt.show()

Here we plot the cluster centres

plt.scatter(cluster_centers[:, 0], [0] * num_clusters, marker='X',

color='red', s=200, label='Cluster Centers')

Here we set the figure size

plt.figure(figsize=(8, 6))

Here we set the title

plt.title('Cluster Centers')

Here we set the x-axis label

plt.xlabel('Features')

Here we set the legend title

plt.legend()

Here we show the plot

plt.show()

Here we set the figure size

plt.rcParams['figure.figsize'] = [12, 8]

Here we set the font size

plt.rcParams['font.size'] = 14

Here we set the number of epochs

epochs = 750

Here we plot the accuracy

plt.plot(history.history['accuracy'], label='Accuracy')

Here we plot the validation accuracy

plt.plot(history.history['val_accuracy'], label='Validation Accuracy')

 Deliverable 5.4 Version 2

 Page 80

Here we plot the loss

plt.plot(history.history['loss'], label='Loss')

Here we plot the validation loss

plt.plot(history.history['val_loss'], label='Validation Loss')

Here we set the legend

plt.legend()

Fig 14: The overall Workflow of Genetic Algorithm with K-Means Machine Learning Algorithm.

Figure 14 illustrates the deployment of K-Means and the GA, integrated with the Generative
Adversarial Network (GAN) and the Reverse Generative Adversarial Network (RGAN). This
framework labels_real = np.ones((batch_size, 1)); labels_fake =
np.zeros((batch_size, 1)) is tailored for the creation, pre-processing, cleaning, and
splitting of project-specific data. GAN generator _ optimizer = tf. Keras.

optimizers. Adam(learning _ rate = 0.0002) plays a pivotal role in the
creating of synthetic data, underpinned by a dynamic adversarial process. Within this process,
the generative model learns from the input data and subsequently generates new data
instances d_loss_fake =

discriminator.train_on_batch(generated_images, labels_fake) .
These generated data instances closely resemble the characteristics of the original dataset,
effectively enriching the available data resources. Whilst RGAN model
discriminator_optimizer. minimize (discriminator_loss) is employed
in the pre-processing phase to remove noise and outliers from the data. RGANs reversed

 Deliverable 5.4 Version 2

 Page 81

data = discriminator(generated_data) are known for their ability to enhance

data quality by generating cleaner versions of the input data. For data cleaning phase, the data
was prepared for analysis. It includes steps such as removing duplicate records and correcting
errors data = data. drop_duplicates(); outliers =

data[~data.isin(data.quantile([0.25, 0.75]).values.T)]. The output
of this phase is a clean and well-prepared dataset. The second step is data splitting X_train,
X_test, y_train, y_test = train_test_split(data, test_size=0.20,

random_state=42) which consist of two sets - the training set and the validation set. The
training set is used to train the K-Means machine learning model, while the validation set is
used to test the model's performance and ensure it's not overfitting. The percentages of data
allocated to training and validation are 20% and 80%, respectively. As the model compilation
model. Compile (optimizer = 'adam', loss=

'categorical_crossentropy', metrics=['accuracy']) and fitting

model.fit(X_train, y_train, epochs=50) processes unfold, this culminates of
in the presentation of the best possible output.

	History
	Author list
	Executive Summary
	Abbreviations and Acronyms
	Table of Contents
	1 Introduction: The Role of the Ecolopes Computational Model in the Ontology-aided Generative Computational Design Process
	2 Algorithmic Processes in the Ontology-aided Generative Design Process
	2.1 Algorithms for the Translational Process: Loop 1
	2.2 Algorithms for the Generative Process: Loop 2
	2.3 Algorithms for the Generative Process: Loop 3

	3 Validation
	3.1 Validation of the Components of the Ontology-aided Generative Computational Design Process
	3.2 Validation of the Interaction between the Components
	3.3 Validation of the Design Output: The Vienna Case Study
	3.4 Validation of the Robustness of the Approach for Architectural Practice

	4 Further Development Steps
	4.1 Open Questions and Next Steps
	4.2 Intended Development Stage at the End of the Project
	4.3 Technology Readiness Level
	4.4 Adherence to FAIR Principles

	5 Publication Plan
	References
	Appendix 1: Initial Generative Algorithm Code
	Appendix 2: ML Code

